Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1169-1173
© 2009 The Japan Institute of Metals

Effect of Through Cage on Active Screen Plasma Nitriding Properties

Akio Nishimoto, Atsushi Tokuda and Katsuya Akamatsu

Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita 564-8680, Japan

Low carbon steel S15CK was nitrided by active screen plasma nitriding (ASPN) using various stainless steel cages to investigate the effect of the cage on the nitriding properties. Three types of austenitic stainless steel cages, such as pipe, foil, and wire mesh, were used. The sample was treated for 18 ks at 773 K under 630 Pa in 50% N2 + 50% H2 gases. The nitrided samples were characterized by surface roughness tests, optical microscopy, scanning electron microscopy, X-ray diffraction, and microhardness testing. In all samples nitrided by the ASPN process, the `edging effect' was completely eliminated whereas hardness and thickness of the surface layer were comparable with those obtained from the DC plasma nitriding. Moreover, a comparison of the screens used in the ASPN process revealed that the screen hole size had a slight influence on surface properties such as microstructure and hardness.

(Received 2008/11/25; Accepted 2009/2/6; Published 2009/4/2)

Keywords: active screen plasma nitriding, DC plasma nitriding, through cage, edging effect, steel, surface engineering

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Y. Sun and T. Bell: Mater. Sci. Eng. A 140 (1991) 419–434.
  2. M. Samandi, B. A. Shedden, D. I. Smith, G. A. Collins, R. Hutchings and J. Tendys: Surf. Coat. Technol. 59 (1993) 261–266.
  3. M. A. J. Somers and E. J. Mittemeijer: Metall. Mater. Trans. A 26A (1995) 57–74.
  4. B. Zhao, J. Sun, J. S. Wu and Z. X. Yuan: Scr. Mater. 46 (2002) 581–586.
  5. K. Funatani: Met. Sci. Heat Treat. 46 (2004) 277–280.
  6. H. Berns, R. L. Juse, J. W. Bouwman and B. Edenhofer: Heat Treat. Met. 27 (2000) 39–45.
  7. C. Alves Jr., E. F. da Silva and A. E. Martinelli: Surf. Coat. Technol. 139 (2001) 1–5.
  8. J. Georges: Heat Treat. Met. 28 (2001) 33–37.
  9. D. Cleugh: Surf. Eng. 18 (2002) 133–139.
  10. C. X. Li, T. Bell and H. Dong: Surf. Eng. 18 (2002) 174–181.
  11. C. X. Li, J. Georges and X. Y. Li: Surf. Eng. 18 (2002) 453–458.
  12. C. X. Li and T. Bell: Heat Treat. Met. 30 (2003) 1–7.
  13. C. X. Li and T. Bell: Corros. Sci. 46 (2004) 1527–1547.
  14. C. X. Li and T. Bell: Wear 256 (2004) 1144–1152.
  15. C. X. Li and T. Bell: J. Mater. Process. Technol. 168 (2005) 219–224.
  16. Sh. Ahangarani, F. Mahboubi and A. R. Sabour: Vacuum 80 (2006) 1032–1037.
  17. C. X. Li, H. Dong and T. Bell: J. Mater. Sci. 41 (2006) 6116–6118.
  18. P. Hubbard, S. J. Dowey, E. D. Doyle and D. G. McCulloch: Surf. Eng. 22 (2006) 243–247.
  19. C. Zhao, C. X. Li, H. Dong and T. Bell: Surf. Coat. Technol. 201 (2006) 2320–2325.
  20. C. Alves Jr., F. O. de Araujo, K. J. B. Ribeiro, J. A. P. da Costa, R. R. M. Sousa and R. S. de Sousa: Surf. Coat. Technol. 201 (2006) 2450–2454.
  21. R. R. M. de Sousa, F. O. de Araujo, K. J. B. Ribeiro, M. W. D. Mendes, J. A. P. da Costa and C. Alves Jr.: Mater. Sci. Eng. A 465 (2007) 223–227.
  22. Sh. Ahangarani, A. R. Sabour and F. Mahboubi: Appl. Surf. Sci. 254 (2007) 1427–1435.
  23. K. J. B. Ribeiro, R. R. M. de Sousa, F. O. de Araujo, R. A. de Brito, J. C. P. Barbosa and C. Alves Jr.: Mater. Sci. Eng. A 479 (2008) 142–147.
  24. R. R. M. de Sousa, F. O. de Araujo, J. C. P. Barbosa, K. J. B. Ribeiro, J. A. P. da Costa and C. Alves Jr.: Mater. Sci. Eng. A 487 (2008) 124–127.
  25. A. P. Kauling, G. V. Soares, C. A. Figueroa, R. V. B. de Oliveira, I. J. R. Baumvol, C. Giacomelli and L. Miotti: Mater. Sci. Eng. C 29 (2009) 363–366.
  26. C. Ruset, S. Ciuca and E. Grigore: Surf. Coat. Technol. 174–175 (2003) 1201–1205.
  27. J. Slycke, L. Sproge and J. Agren: Scand. J. Metall. 17 (1988) 122–126.


© 2009 The Japan Institute of Metals
Comments to us :