Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1157-1160
© 2009 The Japan Institute of Metals

Evaluation of the Cox Equation to Derive Dynamic Contact Angle at Nanopores Imbibition: A Molecular Dynamics Study

S. Ahadian and Y. Kawazoe

Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577, Japan

Molecular dynamics (MD) simulation is employed to simulate the imbibition of a designed nanopore by a fluid. The fluid is considered as a simple Lennard-Jones (LJ) fluid. For this system (i.e., LJ fluid and nanopore), the length of imbibition as a function of time for various interactions between the fluid and the pore wall is recorded. In almost all cases, the kinetics of imbibition is successfully described with the Lucas-Washburn (LW) equation. However, the deviation from the LW equation is observed in some cases. This nonconformity is contributed to the neglecting of the dynamic contact angle (DCA) in the LW equation. A hydrodynamic model (i.e., the Cox equation) is taken into consideration to calculate the DCA. It is demonstrated that the LW equation together with the Cox equation is able to justify the simulation results for those cases, which are not in good agreement with the simple LW equation. Further investigation on the MD simulation data reveals that the Cox equation is only appropriate to derive the DCA at small capillary numbers. This finding is in consonance with the theoretical background of this equation as well as experimental work.

(Received 2008/10/28; Accepted 2009/2/27; Published 2009/4/22)

Keywords: nanopores imbibition, molecular dynamics simulation, Lucas-Washburn equation, dynamic contact angle, Cox equation

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. R. Lucas: Kolloid Z. 23 (1918) 15–22.
  2. E. W. Washburn: Phys. Rev. 17 (1921) 273–283.
  3. S. Supple and N. Quirke: Phys. Rev. Lett. 90 (2003) 214501.
  4. S. Supple and N. Quirke: J. Chem. Phys. 122 (2005) 104706.
  5. P. G. de Gennes: Rev. Mod. Phys. 57 (1985) 827–863.
  6. R. G. Cox: J. Fluid Mech. 168 (1986) 169–194.
  7. Y. D. Shikhmurzaev: J. Fluid Mech. 334 (1997) 211–249.
  8. T. D. Blake and J. M. Haynes: J. Colloid Interface Sci. 30 (1969) 421–423.
  9. G. Martic, T. D. Blake and J. De Coninck: Langmuir 21 (2005) 11201–11207.
  10. M. Bracke, F. De Voeght and P. Joos: Prog. Colloid Polym. Sci. 79 (1989) 142–149.
  11. B. Lavi and A. Marmur: Colloids Surf. A: Physicochem. Eng. Aspects 250 (2004) 409–414.
  12. B. Lavi, A. Marmur and J. Bachmann: Langmuir 24 (2008) 1918–1923.
  13. P. G. de Gennes, X. Hua and P. Levinson: J. Fluid Mech. 212 (1990) 55–63.
  14. A. M. Cazabat: Adv. Colloid Interface Sci. 42 (1992) 65–87.
  15. D. I. Dimitrov, A. Milchev and K. Binder: Phys. Rev. Lett. 99 (2007) 054501.
  16. M. P. Allen and D. J. Tildesley: Computer Simulation of Liquids, (Clarendon Press, Oxford, 1987).
  17. T. Soddemann, B. Dünweg and K. Kremer: Phys. Rev. E 68 (2003) 046702.
  18. J. A. Backer, C. P. Lowe, H. C. J. Hoefsloot and P. D. Iedema: J. Chem. Phys. 122 (2005) 154503.
  19. J. S. Rowlinson and B. Widom: Molecular Theory of Capillarity, (Clarendon Press, Oxford, 1982).
  20. P. Huber, S. Grüner, C. Schäfer, K. Knorr and A. V. Kityk: Eur. Phys. J. ST 141 (2007) 101–105.
  21. N. R. Draper and H. Smith: Applied Regression Analysis, (Wiley, 3rd ed., New York, 1998).
  22. E. K. Rideal: Phil. Mag. 44 (1922) 1152–1159.
  23. C. H. Bosanquet: Phil. Mag. 45 (1923) 525–531.


© 2009 The Japan Institute of Metals
Comments to us :