Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1113-1122
© 2009 The Japan Institute of Metals

Thermodynamic Description of the Mg-Mn, Al-Mn and Mg-Al-Mn Systems Using the Modified Quasichemical Model for the Liquid Phases

Mohammad Asgar-Khan and Mamoun Medraj

Department of Mechanical Engineering, Concordia University, Montreal, Quebec, H3G 2B9, Canada

A self-consistent thermodynamic model of the Mg-Mn, Al-Mn and Mg-Al-Mn systems has been developed. The major difference between this work and the already existing assessments of these systems is the application of the modified quasichemical model for the liquid phase in each system while most of the existing descriptions use the random mixing model. In the absence of key data for the Mg-Mn system, the calculated thermodynamic properties from the model have been found comparable to other similar systems and the estimated critical temperature of the Mg-Mn liquid miscibility gap using the available empirical equation has been found to be in acceptable agreement with the calculated value. A comparison between the current work and the most recent work on the Al-Mn system that uses the same model for the liquid phase reveals that better agreement with the experimental data with less number of model parameters has been achieved in the current work. Kohler symmetric extrapolation model with only one ternary interaction parameter has been used to calculate the ternary Mg-Al-Mn system. The thermodynamic description of the Mg-Al-Mn system has been verified by extensive comparison with the available experimental data from numerous independent experiments. The model can satisfactorily reproduce all the invariant points and the key phase diagram and thermodynamic features of the ternary as well as the constituent binary systems.

(Received 2008/12/24; Accepted 2009/2/20; Published 2009/4/15)

Keywords: thermodynamic modeling, quasichemical model, magnesium-aluminum-manganese, ternary phase diagram, magnesium alloys, aluminum alloys

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. A. Pelton, S. Degterov, G. Eriksson, C. Robelin and Y. Dessureault: Metall. Mater. 31B (2000) 651–659.
  2. M. Aljarrah: Ph.D. Thesis, Concordia University, (Montreal, Quebec, Canada, 2008).
  3. M. Aljarrah and M. Medraj: J. Chem. Thermodyn. 40 (2008) 724–734.
  4. M. Aljarrah and M. Medraj: CALPHAD 32 (2008) 240–251.
  5. A. Shukla, Y. Kang and A. Pelton: CALPHAD 32 (2008) 470–477.
  6. Y. Kang, A. Pelton, P. Chartrand and C. Fuerst: CALPHAD 32 (2008) 413–422.
  7. M. Mezbahul-Islam, D. Kevorkov and M. Medraj: J. Chem. Thermodyn. 40 (2008) 1064–1076.
  8. A. McAlister and J. Murray: Bull. Alloy Phase Diag. 8 (1987) 438–447.
  9. A. Jansson: Metall. Trans. A 23 (1991) 2953–2962.
  10. X. Liu, R. Kainuma, H. Ohtani and K. Ishida: J. Alloy. Compd. 235 (1996) 256–261.
  11. X. Liu, R. Kainuma and K. Ishida: J. Phase Equilib. 20 (1999) 45–56.
  12. C. Müller, H. Stadelmaier, B. Reinsch and G. Petzow: Z. Metallkd. 87 (1996) 594–597.
  13. H. Okamoto: J. Phase Equilib. 18 (1997) 398–399.
  14. G. Kuznetsov, A. Barsukov and M. Abas: Tsvetn. Met. 1 (1983) 96–100.
  15. Y. Minamino, Y. Toshimi, H. Araki, N. Takeuchi, Y. Kang, Y. Miyamoto and T. Okamoto: Metall. Mater. 22A (1991) 783–786.
  16. K. Ishida: CALPHAD 20 (1996) 1–35.
  17. A. Livanov and M. Vozdvizhenskii: Trudy Moskov. Avaiatsn. 31 (1958) 65–83.
  18. Y. Du, J. Wang, J. Zhao, J. Schuster, F. Weitzer, R. Schmid-Fetzer, M. Ohno, H. Xu, Z. Liu, S. Shang and W. Zhang: Int. J. Mat. Res. 98 (2007) 855–871.
  19. A. Shukla and A. Pelton: J. Phase Equilib. Diffus. 30 (2008) 28–39.
  20. Y. Esin, N. Bobrov, M. Petrushevski and P. Geld: Zh. Fiz. Khim. 47 (1973) 1959–1962.
  21. G. Batalin, E. Beloboradova, B. Stukalo and A. Chekhovskii: Ukr. Khim. Zh. 38 (1972) 825–827.
  22. R. Chastel, M. Saito and C. Bergman: J. Alloy. Compd. 205 (1994) 39–43.
  23. O. Kubaschewski and G. Heymer: Trans. Farad. Soc. 56 (1960) 473–478.
  24. S. Meschel and O. Kleppa: NATO ASI Ser. E 256 (1994) 103–112.
  25. R. Kematick and C. Myers: J. Alloy. Compd. 178 (1992) 343–349.
  26. A. Hashemi and J. Clark: Bull. Alloy Phase Diag. 6 (1985) 160–164.
  27. J. Gröbner, D. Mirkovic, M. Ohno and R. Schmid-Fetzer: J. Phase Equilib. Diffus. 26 (2005) 234–239.
  28. Y. Kang, A. Pelton, P. Chartrand, P. Spencer and C. Fuerst: J. Phase Equilib. Diffus. 28 (2007) 342–354.
  29. C. Antion: Ph.D. Thesis, Institut National Polytechnique of Grenoble, (2003).
  30. M. Ohno and R. Schmid-Fetzer: Z. Metallkd. 96 (2005) 857–869.
  31. N. Ageev, I. Kornilov and A. Khlapova: Izvest. Sektora Fiz.-Khim. Anal. 16 (1948) 130–143.
  32. B. Nelson: J. Met. 3 (1951) 797–799.
  33. M. Mirgalovskaya, L. Matkova and E. Komova: Trudy Inst. Met. 2 (1957) 139–148.
  34. C. Simensen, B. Oberlaender, J. Svalestuen and A. Thorvaldsen: Z. Metallkd. 79 (1988) 696–699.
  35. C. Simensen, B. Oberlaender, J. Svalestuen and A. Thorvaldsen: Z. Metallkd. 79 (1988) 537–540.
  36. A. Thorvaldsen and C. Aliravci: Proc. Int. Symp. on Adv. Prod. Light Met. Met. Matrix Comp. (1992) pp 277–287.
  37. W. Leemann and H. Hanemann: Aluminium-Arch 9 (1940) 9–10.
  38. W. Hofmann and R. Ovrddot: Aluminium 20 (1938) 865–872.
  39. E. Fahrenhorst and W. Hofmann: Metallwissenschaft 19 (1940) 891–893.
  40. E. Butchers, G. Raynor and W. Hume-Rothery: J. Ins. Met. 69 (1943) 209–228.
  41. A. Little, G. Raynor and W. Hume-Rothery: J. Ins. Met. 69 (1943) 423–440.
  42. D. Wakeman and G. Raynor: J. Ins. Met. 75 (1948) 131–150.
  43. T. Ohnishi, Y. Nakatani and K. Shimizu: Keikinzoku 23 (1973) 437–443.
  44. T. Ohnishi, Y. Nakatani and K. Shimizu: Keikinzoku 23 (1973) 202–209.
  45. J. Barlock and L. Mondolfo: Z. Metallkd. 66 (1975) 605–611.
  46. H. Fun, H. Lin, T. Jen and B. Yip: Acta Crystallogr. C 50 (1994) 661–663.
  47. A. Beerwald: Metallwissenschaft Metalltecknik 23 (1944) 404–407.
  48. C. Bale, A. Pelton and W. Thompson: http://www.crct.polymtl.ca (2008).
  49. A. Dinsdale: Calphad 15 (1991) 317–425 (updated 2004 version).
  50. J. Daams, P. Villars and J. Vucht ed.: Atlas of Crystal Structure Types for Intermetallic Phases, (ASM international, Materials Park, Oh:, 1991).
  51. A. Westgren: Z. Metallkd. 22 (1930) 368–374.
  52. H. Kono: J. Phys. Soc. Jpn. 13 (1958) 1444–1451.
  53. E. Butchers and W. Hume-Rothery: J. Ins. Met. 71 (1945) 87–91.
  54. M. Drits, E. Kadaner, E. Padezhnova and N. Bochvar: Zh. Neorg. Khim. 9 (1964) 1397–1402.
  55. E. Dix, W. Fink and L. Willey: Trans. Am. Inst. Mining Met. Eng. 104 (1933) 335–352.
  56. I. Obinata, K. Yamaji and E. Hata: Nippon Kinzoku Gakkaishi 17 (1953) 496–501.
  57. T. Goedecke and W. Köster: Z. Metallkd. 62 (1971) 727–732.
  58. W. Köster and E. Wachtel: Z. Metallkd. 51 (1960) 271–280.
  59. A. Koch, P. Hokkeling, M. Steeg and K. Vos: J. Appl. Phys. 31 (1960) 75–77.
  60. J. Murray, A. McAlister, R. Schaefer, L. Bendersky, F. Biancaniello and D. Moffat: Metall. Trans. 18A (1987) 385–392.
  61. M. Drits, Z. Sviderskaya and L. Rokhlin: Issled. Metal. V. Zhidkom I. Tverd. Sostoyaniyakh (1964) 272–278.
  62. D. Petrov, M. Mirgalovskaya, I. Strelnikova and E. Komova: Trans. Inst. Met. 1 (1958) 142–143.
  63. E. Schmid and G. Siebel: Metallwirtschaft 10 (1931) 923–925.
  64. J. Grogan and J. Haughton: J. Inst. Met. 69 (1943) 241–248.
  65. M. Chukhov: Inst. Met. A. A. Baikova 1 (1958) 302–305.
  66. A. Schneider and H. Stobbe-Scholder: Metall. 4 (1950) 178–183.
  67. G. Siebel: Z. Metallkd. 39 (1948) 22–27.
  68. N. Tiner: Trans. Met. Soc. AIME 161 (1945) 351–359.
  69. B. Predel: Z. Metallkd. 56 (1965) 791–798.
  70. R. Singh and F. Sommer: Rep. Prog. Phys. 60 (1997) 57–150.
  71. R. Schaefer, F. Biancaniello and W. Cahn: Scr. Metall. 20 (1986) 1439–1444.


[JIM HOME] [JOURNAL ARCHIVES]

© 2009 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp