Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1054-1059
© 2009 The Japan Institute of Metals

Effects of Additives on Microstructures of Titanate Based Nanotubes Prepared by the Hydrothermal Process

Takashi Kubo1, Keijiro Sugimoto1, Takamasa Onoki1, Yuki Yamasaki2 and Atsushi Nakahira1,3

1Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
2Department of Chemistry, Faculty of Economics, Hosei University, Tokyo 194-0298, Japan
3IMR, Osaka Center, Tohoku University, Sakai 599-8531, Japan

Silica-containing TiO2-derived titanate nanotubes were prepared by the addition of a small amount of tetraethyl orthosilicate (TEOS) to TiO2-derived titanate nanotubes prepared by the hydrothermal process and a subsequent heat-treatment at 473 K in air. The microstructure and thermal behavior of synthesized silica containing TiO2-derived titanate nanotubes were investigated by various methods such as X-ray diffraction (XRD), X-ray absorption fine structure (XAF), and X-ray photoelectron spectroscopy (XPS). As a result, the addition of a small amount of TEOS leaded to the improvement of the thermal stability for TiO2-derived titanate nanotubes. XPS results revealed that Si was combined onto the surface of TiO2-derived titanate nanotubes, forming partial Si-O-Ti chemical bonds. Therefore, it was inferred that the thermal stability could be modified by forming partial Si-O-Ti chemical bonds at interface of silica and TiO2-derived titanate nanotubes.

(Received 2008/11/5; Accepted 2009/1/19; Published 2009/3/4)

Keywords: titanate nanotube, silica, X-ray absorption fine structure, X-ray photoelectron spectroscopy, chemical binding

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. S. Iijima: Nature 354 (1991) 56–58.
  2. P. M. Ajayan, O. Stephan, P. Redlich and C. Colliex: Nature 375 (1995) 564–567.
  3. P. Hoyer: Langmuir 12 (1996) 1411–1413.
  4. H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima: J. Mater. Chem. 9 (1999) 2971–2972.
  5. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Langmuir 14 (1998) 3160–3163.
  6. H. Tokudome and M. Miyauchi: Angew. Chem. Int. Ed. 44 (2005) 1974–1977.
  7. S. Kubota, K. Johkura, K. Asanuma, Y. Okouchi, N. Ogiwara, K. Sasaki and T. Kasuga: J. Mater. Sci: Mater. Med. 15 (2004) 1031–1035.
  8. A. Thorne, A. Kruth, D. Tunstall, J. T. S. Irvine and W. Zhou: J. Phys. Chem. B 109 (2005) 5439–5444.
  9. H. Tokudome and M. Miyauchi: Chem. Comm. 8 (2004) 958–959.
  10. T. Akita, M. Okumura, K. Tanaka, K. Ohkuma, M. Kohyama, T. Koyanagi, M. Date, S. Tsubota and M. Haruta: Surf. Interface Anal. 37 (2005) 265–269.
  11. A. Nakahira, T. Kubo, Y. Yamasaki, T. Suzuki and Y. Ikuhara: Jpn. J. Appl. Phys. 44 (2005) 690–692.
  12. T. Kubo, H. Nagata, M. Takeuchi, M. Matsuoka, M. Anpo and A. Nakahira: Res. Chem. Intermed. 34 (2008) 339–346.
  13. G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan and L. M. Peng: Appl. Phys. Lett. 79 (2001) 3702–3704.
  14. Q. Chen, G. H. Du, S. Zhang and L. M. Peng: Acta Crystallogr. B 58 (2002) 587–593.
  15. R. Ma, Y. Bando and T. Sasaki: Chem. Phys. Lett. 380 (2003) 577–582.
  16. B. D. Yao, Y. E. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang and N. Wang: Appl. Phys. Lett. 82 (2003) 281–283.
  17. J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo and Z. Zhang: Dalton Trans. (2003) 3898–3901.
  18. W. Wang, O. K. Varghese, M. Paulose, C. A. Grimes, Q. Wang and E. C. Dickey: J. Mater. Res. 19 (2004) 417–422.
  19. A. Nakahira, W. Kato, M. Tamai, T. Isshiki, K. Nishio and H. Aritani: J. Mater. Sci. 39 (2004) 4239–4245.
  20. T. Kubo and A. Nakahira: J. Phys. Chem. C 112 (2008) 1658–1662.
  21. Z. R. Tian, J. A. Voigt, J. Lin, B. Mckenzie and H. Xu: J. Am. Chem. Soc. 125 (2003) 12384–12385.
  22. M. Miyauchi and H. Tokudome: Thin Solid Films 515 (2006) 2091–2096.
  23. T. Kubo, Y. Yamasaki and A. Nakahira: J. Mater. Res. 22 (2007) 1286–1291.
  24. R. Yoshida, Y. Suzuki and Y. Susumu: Mater. Chem. Phys. 91 (2005) 409–416.
  25. B. Poudel, W. Z. Wang, C. Dames, J. Y. Huang, S. Kunwar, D. Z. Wang, D. Banerjee, G. Chen and Z. F. Ren: Nanotech. 16 (2005) 1935–1940.
  26. M. Yoshikawa, K. Hirota and O. Yamaguchi: J. Am. Ceram. Soc. 80 (1997) 2749–2753.
  27. S. R. Kumer, C. Suresh, A. K. Vasudevan, N. R. Suja, P. Mukundan and K. G. K. Warrier: Mater. Lett. 38 (1999) 161–166.
  28. H. Kominami, M. Kohno, Y. Matsunaga and Y. Kera: J. Am. Ceram. Soc. 84 (2001) 1178–1180.
  29. K. Okada, N. Yamamoto, Y. Kaneshima, A. Yasumori and K. J. D. Mackenzie: J. Am. Ceram. Soc. 84 (2001) 1591–1596.
  30. M. Anpo, H. Nakaya, S. Kodama, Y. Kubokawa, K. Domen and T. Onishi: J. Phys. Chem. 90 (1985) 1633–1636.
  31. H. Yamashita, S. Kawasaki, Y. Ichikawa, M. Harada, M. Takeuchi, G. Stewart, M. A. Fox, C. Louis, M. Che and M. Anpo: J. Phys. Chem. B 102 (1998) 5870–5875.
  32. L. A. Grunes: Phys. Rev. B 27 (1983) 2111–2131.
  33. Z. Y. Wu, G. Ouvard, P. Gressier and C. R. Natoli: Phys. Rev. B 55 (1997) 10382–10391.
  34. L. X. Chen, T. Rajh, Z. Wang and M. C. Thurnauer: J. Phys. Chem. B 101 (1997) 10688–10697.
  35. T. L. Hanley, V. Luca, I. Pickering and R. F. Howe: J. Phys. Chem. B 106 (2002) 1153–1160.
  36. A. G. Mckale, B. W. Veal, A. P. Paulikas, S. K. Chan and G. S. Knapp: J. Am. Chem. Soc. 110 (1988) 3763–3768.
  37. J. E. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben: Handbook of X-ray photoelectron spectroscopy; (Physical Electronics Inc.: Eden Prairie, MN, 1995).
  38. Y. L. Lin, T. J. Wang and Y. Jin: Powder Technol. 123 (2002) 194–198.
  39. M. Ramirez-Del-Solar, N. De la Rosa-Fox, L. Esquivias and J. Zarzycki: J. Non-Cryst. Solids 121 (1990) 84–89.
  40. H. Izumi, P. K. Nair, K. Maeda, Y. Kiyozumi and F. Mizukami: Mater. Res. Bull. 32 (1997) 1303–1311.
  41. C. Anderson and A. J. Bard: J. Phys. Chem. B 101 (1997) 2611–2616.
  42. S. Iwamoto, S. Iwamoto and M. Inoue: Chem. Mater. 17 (2005) 650–655.


© 2009 The Japan Institute of Metals
Comments to us :