Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1046-1049
© 2009 The Japan Institute of Metals

Synthesis and Characterization of Silicon-Doped Hydroxyapatite

Kentaro Nakata1, Takashi Kubo1, Chiya Numako2, Takamasa Onoki1 and Atsushi Nakahira1,3

1Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531, Japan
2Department of Natural system, Faculty of Integrated Science, Tokushima University, Tokushima 770-8502, Japan
3Institute of Materials Research, Osaka Center, Tohoku University, Sakai 599-8531, Japan

Silicon was doped to hydroxyapatite by hydrothermal techniques for higher biocompatibility. Products contained tetra-ethyl-orthosilicate (TEOS) as a silicon source in the range of 0 to 15 mass%. In order to evaluate bioactivity of silicon-doped hydroxyapatite, the samples were soaked in simulated body fluid (SBF). Silicon doped samples showed faster apatite forming ability than the undoped samples. The samples were examined by transmission electron microscopy (TEM), X-ray diffraction patterns (XRD), Fourier transform infrared spectroscopy (FTIR) and X-ray absorption fine structure (XAFS). There results indicated that SiO44- ion substituted PO43- ion site in apatite structures. And it was found that appropriate TEOS doping ratio was 10 mass% for superior biocompatibility due to amorphous SiO2 segregation in the 15 mass% TEOS doped samples.

(Received 2008/11/4; Accepted 2009/1/6; Published 2009/2/18)

Keywords: hydroxyapatite, silicon, hydrothermal, doping, X-ray absorption fine structure

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. S. H. Maxian, J. P. Zawaddsky and M. G. Dunn: J. Biomed. Mater. RES. 28 (1994) 1311.
  2. E. L. Solla, J. P. Borrajo, P. Gonzalez, J. Serra, S. Chiussi, B. Leon and J. Garcia Lopez: Appl. Surf. Sci. 253 (2007) 8282.
  3. E. Schepers, M. Declercq, P. Ducheyne and R. Kempeneers: J. Oral Rehabil. 18 (1991) 439.
  4. S. Sprio, A. Tampieri, E. Landi, M. Sandri, S. Martorana, G. Celotti and G. Logroscino: Mater. Sci. Eng. 28 (2008) 179.
  5. E. M. Carlisle: Science 167 (1970) 279.
  6. A. E. Porter, N. Patel, J. N. Skepper, S. M. Best and W. Bonfield: Biomater. 25 (2004) 3307.
  7. D. Arcos, J. R. Carvajal and M. V. Regi: Chem. Mater. Res. 4 (1994) 422.
  8. R. Z. LeGeros: Nature 206 (1965) 279.
  9. A. J. Ruys: J. Aust. Ceram. Soc. 29 (1993) 77.
  10. L. Boyer, J. Carpena and J. L. Lacout: Sol. Sta. Ion. 95 (1997) 121.
  11. I. R. Gibson, S. M. Best, W. Bonfield and J. Biomed: Mater. Res. 4 (1997) 422.
  12. X. L. Tang, X. F. Xiao and R. F. Liu: Mater. Lett. 59 (2005) 3843.
  13. Y. H. Kim, H. Song and D. H. Riu: Current Appl. Phys. 5 (2005) 538.
  14. Y. Tanizawa and T. Suzuki: Phos. Res. Bull. 4 (1994) 87.
  15. A. Nakahira, C. Karatani, S. Konishi, F. Nishimura, S. Takeda, S. Nishijima and T. Watanabe: Zairyo 52 (2003) 4205.
  16. A. Nakahira, C. Karatani and S. Nishida: Phos. Res. Bull. 17 (2004) 148–152.
  17. M. Tamai, T. Yamamoto, H. Aritani and A. Nakahira: Phos. Res. Bull. 17 (2004) 69–74.
  18. A. Nakahira, T. Okajima, T. Honma, S. Yoshioka and I. Tanaka: Chem. Let. 35 (2006) 856–857.
  19. A. Nakahira, S. Nakamura and M. Horimoto: IEEE Trans. Magn. 43 (2007) 2465–2467.
  20. A. Nakahira, M. Horimoto, S. Nakamura, S. Ishihara, H. Nagata, T. Kubo and C. Karatani: J. Ion Exc. 18 (2007) 306–309.
  21. T. Kokubo: J. Non-Cryst. Solids 120 (1990) 138.
  22. T. Leventouri, C. E. Bunaciu and V. Perdikatsis: Biomater. 24 (2003) 4205.
  23. I. Rehman and W. Bonfield: J. Mater. Sci. Mater. Med. 8 (1997) 1.


© 2009 The Japan Institute of Metals
Comments to us :