Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1032-1036
© 2009 The Japan Institute of Metals

Densification Behavior of Ti-Doped Polycrystalline Alumina in a Nitrogen-Hydrogen Atmosphere

Hidehiro Yoshida1, Keijiro Hiraga1 and Takahisa Yamamoto2

1Nano Ceramics Center, National Institute for Materials Science, Tsukuba 305-0047, Japan
2Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan

The densification behavior during sintering of 0.1 mol% TiO2-doped Al2O3 was measured in either an air or N2+5%H2 gas atmosphere at the sintering temperature of 1573–1673 K. The grain boundary diffusivity was evaluated from the densification rate. High-resolution transmission electron microscopy (HRTEM) and nano-probe energy-dispersive X-ray spectroscopy (EDS) analyses revealed that the doped Ti cations segregate in the vicinity of the grain boundaries in the Al2O3. An electron energy loss spectroscopy (EELS) investigation indicated that the valence state of Ti in the Al2O3 sintered in the reducing atmosphere was close to +3. The grain boundary diffusivity in undoped Al2O3 was insensitive to the atmosphere, but was enhanced by the grain boundary segregation of Ti4+. The grain boundary diffusivity of alumina in the reducing atmosphere was, however, retarded by the Ti3+-doping. The retarded diffusivity by Ti3+-doping must be related to the lack of aluminum vacancies and the large ionicity of Ti-O compared to Al-O.

(Received 2008/11/5; Accepted 2009/1/19; Published 2009/4/25)

Keywords: alumina, titanium-doped alumina, sintering, grain boundary, diffusivity

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. E. Arzt, M. F. Ashby and K. E. Easterling: Metall. Trans. A 14 (1983) 211–221.
  2. J. Wang and R. Raj: J. Am. Ceram. Soc. 73 (1990) 1172–1175.
  3. R. D. Bagley, I. B. Cutler and D. L. Johnson: J. Am. Ceram. Soc. 53 (1970) 136–141.
  4. W. C. Johnson and R. L. Coble: J. Am. Ceram. Soc. 61 (1978) 110–114.
  5. R. S. Gordon: Advances in Ceramics, vol.10, ed. by W. D. Kingery, (Am. Ceram. Soc., Columbus, OH, 1984) pp.418–437.
  6. H. Yoshida, S. Hashimoto and T. Yamamoto: Acta Mater. 53 (2005) 433–440.
  7. G. C. Wei and W. H. Rhodes: J. Am. Ceram. Soc. 83 (2000) 1641–1648.
  8. K. Asaga and K. Hamano: J. Ceram. Soc. Japan 83 (1975) 136–142.
  9. A. Mocellin and W. D. Kingery: J. Am. Ceram. Soc. 54 (1971) 339–341.
  10. R. M. Cannon, W. H. Rhodes and A. H. Heuer: J. Am. Ceram. Soc. 63 (1980) 46–53.
  11. H. Harada and T. Sakuma: J. Ceram. Soc. Japan 99 (1991) 136–140.
  12. J. H. Harding, K. J. W. Atkinson and R. W. Grimes: J. Am. Ceram. Soc. 86 (2003) 554–559.
  13. H. Yoshida, K. Okada, Y. Ikuhara and T. Sakuma: Phil. Mag. Lett. 76 (1997) 9–14.
  14. H. Yoshida, Y. Ikuhara and T. Sakuma: J. Mater. Res. 13 (1998) 2597–2601.
  15. H. Yoshida, Y. Takigawa, Y. Ikuhara and T. Sakuma: Mater. Trans. 43 (2002) 1566–1572.
  16. H. Yoshida, Y. Ikuhara and T. Sakuma: Acta Mater. 50 (2002) 2955–2966.
  17. H. Yoshida, Y. Ikuhara, T. Sakuma, M. Sakurai and E. Matsubara: Phil. Mag. 84 (2004) 865–876.
  18. T. P. Jones, R. L. Coble and C. J. Mogab: J. Am. Ceram. Soc. 52 (1969) 331–334.
  19. G. Radtke, S. Lazar and G. A. Botton: Phys. Rev. B 74 (2006) 155117-1–155117-7.
  20. R. L. Coble, H. Song, R. J. Brook, C. A. Handwerker and J. M. Dynys: Advances in Ceramics, vol.10, ed. by W. D. Kingery, (Am. Ceram. Soc., Columbus, OH, 1984) pp.839–852.
  21. S.-J. L. Kang: Sintering—Densification, Grain Growth and Microstructure, (Elsevier Butterworth-Heinemann, MA, 2005) pp.57–62.
  22. A. S. Helle, K. E. Easterling and M. F. Ashby: Acta Metal. 33 (1985) 2163–2174.
  23. M. Kitayama and A. M. Glaeser: J. Am. Ceram. Soc. 88 (2005) 3492–3500.
  24. K. Matsunaga, A. Nakamura, T. Yamamoto and Y. Ikuhara: Phys. Rev. B 68 (2003) 214102-1–214102-8.
  25. K. P. D. Lagerlöf and R. W. Grimes: Acta Mater. 46 (1998) 5689–5700.
  26. W. D. Kingery, H. K. Bowen and D. R. Uhlman: Introduction to Ceramics, (John Wiley and Sons, A Wiley-Interscience Publication, NY, 1976) pp.36–46.
  27. A. L. Allred: J. Inorg. Nucl. Chem. 17 (1961) 215–221.


© 2009 The Japan Institute of Metals
Comments to us :