Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1019-1022
© 2009 The Japan Institute of Metals

First Principles Calculations of Vacancy Formation Energies in Σ 13 Pyramidal Twin Grain Boundary of α-Al2O3

Nobuaki Takahashi1, Teruyasu Mizoguchi1, Tetsuya Tohei1, Kaoru Nakamura1, Tsubasa Nakagawa2, Naoya Shibata1, Takahisa Yamamoto1,3 and Yuichi Ikuhara1,3,4

1Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan
2National Institute for Materials Science, Tsukuba 305-0044, Japan
3Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan
4WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Defect energetics in Σ 13 pyramidal twin grain boundary (GB) of Al2O3 was investigated by a first principles projector-augmented wave method. It was found that the vacancy formation energy depends on the atomic site and the defect energetics at the GB is similar to that in the bulk Al2O3, namely the oxygen vacancy shows much higher formation energy than the aluminum vacancy and the Schottky defect is the most preferable species in a wide range of atmospheres. By analyzing the atomic structures of the GB in detail, it was found that the defect energetics at the GB is closely related to the structural distortions, such as strains and dangling-bonds in the vicinity of the GB.

(Received 2008/12/5; Accepted 2009/1/13; Published 2009/3/4)

Keywords: α-alumina, grain boundary, intrinsic defect energetics, first principles calculation

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. R. M. Cannon, W. H. Rhodes and A. H. Heuer: J. Am. Ceram. Soc. 63 (1980) 46.
  2. A. H. Heuer, N. J. Tighe and R. M. Cannon: J. Am. Ceram. Soc. 63 (1980) 53.
  3. K. P. D. Lagerlöf, T. E. Mitchell and A. H. Heuer: J. Am. Ceram. Soc. 72 (1989) 2159.
  4. A. H. Heuer and K. P. D. Lagerlöf: Philos. Mag. Lett. 79 (1999) 619.
  5. G. J. Dienes, B. O. Welch, C. R. Fisher, R. D. Hatcher, O. Lazareth and M. Samberg: Phys. Rev. B 11 (1975) 3060.
  6. C. R. A. Catlow, R. James, W. C. Mackrodt and R. F. Stewart: Phys. Rev. B 25 (1982) 1006.
  7. R. W. Grimes: J. Am. Ceram. Soc. 77 (1994) 378.
  8. K. P. D. Lagerlöf and R. W. Grimes: Acta Mater. 46 (1998) 5689.
  9. K. Matsunaga, T. Tanaka, T. Yamamoto and Y. Ikuhara: Phys. Rev. B 68 (2003) 085110.
  10. S. Fabris and C. Elsässer: Phys. Rev. B 64 (2001) 245117.
  11. T. Höche and M. Rühle: J. Am. Ceram. Soc. 79 (1996) 1961.
  12. T. Höche, P. R. Kenway, H. J. Kleebe, M. W. Finnis and M. Rühle: J. Phys. Chem. Solids 55 (1994) 1067.
  13. S. Fabris and C. Elsässer: Acta Mater. 51 (2003) 71.
  14. K. Nakamura, T. Mizoguchi, N. Shibata, K. Matsunaga, T. Yamamoto and Y. Ikuhara: Phys. Rev. B 75 (2007) 184109.
  15. P. E. Blöchl: Phys. Rev. B 50 (1994) 17953.
  16. G. Kresse and J. Hafner: Phys. Rev. B 47 (1993) R558.
  17. G. Kresse and J. Furthmüller: Comput. Mater. Sci. 6 (1996) 15.
  18. G. Kresse and J. Furthmüller: Phys. Rev. B 54 (1996) 11 169.
  19. J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865.
  20. K. Nakamura, N. Shibata, K. Matsunaga, T. Yamamoto and Y. Ikuhara: Trans. Mater. Res. Soc. Japan. 31 (2006) 207.
  21. R. Astala and P. D. Bristowe: Modell. Simul. Mater. Sci. Eng. 9 (2001) 415.
  22. S. B. Zhang and J. E. Northrup: Phys. Rev. Lett. 67 (1991) 2339.
  23. H.-S. Lee, T. Mizoguchi, T. Yamamoto and Y. Ikuhara: Acta. Mater. 55 (2007) 6535.
  24. T. Tanaka, K. Matsunaga, Y. Ikuhara and T. Yamamoto: Phys. Rev. B 68 (2003) 205213.
  25. M. Imaeda, T. Mizoguchi, Y. Sato, H.-S. Lee, S. D. Findlay, N. Shibata, T. Yamamoto and Y. Ikuhara: Phys. Rev. B 78 (2008) 245320.
  26. T. Mattila and A. Zunger: Phys. Rev. B 58 (1998) 1367.
  27. R. H. French: J. Am. Chem. Soc. 73 (1990) 477.
  28. M. L. Boltz and R. H. French: Appl. Phys. Lett. 55 (1989) 1955.
  29. S. B. Zhang, S. H. Wei, A. Zunger and H. Katayama-Yoshida: Phys. Rev. B 57 (1998) 9642.


[JIM HOME] [JOURNAL ARCHIVES]

© 2009 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp