Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1015-1018
© 2009 The Japan Institute of Metals

Classical and Hybrid Density-Functional/Classical Molecular Dynamics Study of Dislocation Core in Alumina Ceramic

Kenji Tsuruta1, Toshiyuki Koyama2 and Shuji Ogata3

1Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
2Computational Materials Science Center, National Institute for Materials Science, Tsukuba 305-0047, Japan
3Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

We perform molecular-dynamics simulations to investigate the atomic and electronic structures of a basal edge dislocation in α-Al2O3. The core structure consisting of two non-stoichiometric partial dislocations, which has been recently proposed by an experiment, is examined by an empirical interatomic-potential model and by a hybrid quantum/classical approach. The atomic rearrangements in the full and in the partial dislocation cores are analyzed. The local electronic structure in the full dislocation core is evaluated by the density-functional method applied for a quantum-cluster region in the hybrid simulations. Interaction potentials between partial dislocations are investigated by the classical model. Results preliminarily obtained show that the partials aligned normal to a basal plane ({0001}) has a short-ranged repulsive nature approximately within 8 Å.

(Received 2008/12/8; Accepted 2009/2/3; Published 2009/4/15)

Keywords: molecular dynamics, hybrid quantum/classical method, dislocation core, alumina

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. E. g., R. W. Whitworth: Adv. Phys. 24 (1975) 203–304.
  2. Y. Ikuhara: JEOL News 40 (2005) 18–23.
  3. N. Shibata, M. F. Chisholm, A. Nakamura, S. J. Pennycook, T. Yamamoto and Y. Ikuhara: Science 316 (2007) 82–85.
  4. A. Nakamura, T. Yamamoto and Y. Ikuhara: Acta Mater. 50 (2002) 101–108.
  5. K. Nomura, R. K. Kalia, A. Nakano and P. Vashishta: Comput. Phys. Commun. 178 (2008) 73–87.
  6. R. M. Martin: Electronic Structure, (Cambridge Univ. Press, Cambridge 2004).
  7. S. Ogata: Phys. Rev. B 72 (2005) 045348-1–045348-17.
  8. K. Tsuruta, A. Uchida, C. Totsuji and H. Totsuji: Mater. Sci. Forum 539–543 (2007) 2804–2809.
  9. D. Sánchez-Portal, E. Artacho and J. M. Soler: J. Phys. Condens. Matter 8 (1996) 3859–3880.
  10. P. Vashishta, R. K. Kalia, A. Nakano and J. P. Rino: J. Appl. Phys. 103 (2008) 083504-1–083504-13.
  11. C. Zhang, R. K. Kalia, A. Nakano, P. Vashishta and P. S. Branicio: J. Appl. Phys. 103 (2008) 083508-1–083508-15.
  12. T. Vrenven and K. Morokuma: J. Comp. Chem. 21–16 (2000) 1419–1432.
  13. K. Hirose, T. Ono, Y. Fujimoto and S. Tsukamoto: First-Principles Calculations in Real-Space Formalism, (Imperial College Press, London 2005).
  14. F. Shimojo, T. J. Campbell, R. K. Kalia, A. Nakano, P. Vashishta, S. Ogata and K. Tsuruta: Future Generation Comput. Systems 17 (2000) 279–291.
  15. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery: Numerical Recipes 2nd ed., (Cambridge University Press, Cambridge, London, 1992).
  16. M. P. Allen and D. J. Tildesley: Computer Simulations of Liquids, (Oxford Univ. Press, N.Y., 1987).
  17. F. H. Streitz and J. W. Mintimire: Phys. Rev. B 50 (1994) 11996–12003.


© 2009 The Japan Institute of Metals
Comments to us :