Materials Transactions Online

Materials Transactions, Vol.50 No.05 (2009) pp.1008-1014
© 2009 The Japan Institute of Metals

Structure and Configuration of Boundary Dislocations on Low Angle Tilt Grain Boundaries in Alumina

Atsutomo Nakamura1, Eita Tochigi2, Naoya Shibata2, Takahisa Yamamoto2 and Yuichi Ikuhara2,3

1Graduate School of Engineering, Osaka City University, Osaka 558-8585, Japan
2Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan
3WPI, Tohoku University, Sendai 980-8577, Japan

Structure and configuration of boundary dislocations on various low angle tilt grain boundaries in alumina were considered based on the ideas that the boundary is composed of regularly arrayed edge dislocations and that the dislocations could dissociate into partial dislocations with maintaining the hcp-like oxygen sublattice. Moreover, the separation distance between the partial dislocations formed by the dissociation was evaluated by the calculations based on an elastic theory. The calculations indicated that the width of the stacking fault region between partial dislocations decreases with increasing tilt angles. As a consequence, the hypothesis and calculations used here would enable us to predict the structures of various low angle boundaries with dissociated boundary dislocations.

(Received 2008/12/24; Accepted 2009/3/9; Published 2009/4/22)

Keywords: sapphire, low angle grain boundary, partial dislocation, multiple dissociation

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. J. P. Hirth and J. Lothe: Theory of Dislocations, 2nd edition, ed. by John Wiley (McGraw-Hill, New York, 1982).
  2. A. P. Sutton and R. W. Ballufi: Interfaces in Crystalline Materials, (Oxford Sci. Pub. 1995).
  3. R. Hutson: Phys. Rev. Lett. 46 (1981) 1159–1162.
  4. A. Nakamura, K. Matsunaga, J. Tohma, T. Yamamoto and Y. Ikuhara: Nature Mater. 2 (2003) 453–456.
  5. K. Szot, W. Speier, G. Bihlmayer and R. Waser: Nature Mater. 5 (2005) 312–320.
  6. Z. L. Zhang, W. Sigle, R. A. De Souza, W. Kurtz, J. Maier and M. Rühle: Acta Mater. 53 (2005) 5007–5015.
  7. Y. Sato, J. P. Buban, T. Mizoguchi, N. Shibata, M. Yodogawa, T. Yamamoto and Y. Ikuhara: Phys. Rev. Lett. 97 (2006) 106802.
  8. P. B. Hirsch, Z. Zhou and D. J. H. Cockayne: Phil. Mag. 87 (2007) 5421–5434.
  9. W. T. Read and W. Shockley: Phys. Rev. 78 (1950) 275–289.
  10. N. Shibata, N. Morishige, T. Yamamoto, Y. Ikuhara and T. Sakuma: Phil. Mag. Lett. 82 (2002) 175–181.
  11. Z. Zhang, W. Sigle and M. Rühle: Phys. Rev. B 66 (2002) 094108.
  12. Y. Ikuhara, H. Nishimura, A. Nakamura, K. Matsunaga, T. Yamamoto and K. P. D. Lagerlöf: J. Am. Ceram. Soc. 86 (2003) 595–602.
  13. F. Oba, H. Ohta, Y. Sato, H. Hosono, T. Yamamoto and Y. Ikuhara: Phys. Rev. B 70 (2004) 125415.
  14. N. Shibata, F. Oba, T. Yamamoto and Y. Ikuhara: Phil. Mag. 84 (2004) 2381–2415.
  15. A. Nakamura, K. Matsunaga, T. Yamamoto and Y. Ikuhara: Phil. Mag. 86 (2006) 4657–4666.
  16. E. Tochigi, N. Shibata, A. Nakamura, T. Yamamoto and Y. Ikuhara: Acta Mater. 56 (2008) 2015–2021.
  17. M. L. Kronberg: Acta Metall. 5 (1957) 507–525.
  18. B. J. Pletka, A. H. Heuer and T. E. Mitchell: Acta Metall. 25 (1977) 25–33.
  19. K. P. D. Lagerlöf, A. H. Heuer, J. Castaing, J. P. Rivière and T. E. Mitchell: J. Am. Ceram. Soc. 77 (1994) 385–397.
  20. J. B. Bilde-Sørensen, B. F. Lawlor, T. Geipel, P. Pirouz, A. H. Heuer and K. P. D. Lagerlöf: Acta Mater. 44 (1996) 2145–2152.
  21. A. Nakamura, T. Yamamoto and Y. Ikuhara: Acta Mater. 50 (2002) 101–108.
  22. A. Nakamura, K. P. D. Lagerlöf, K. Matsunaga, J. Tohma, T. Yamamoto and Y. Ikuhara: Acta Mater. 53 (2005) 455–462.
  23. N. Shibata, M. F. Chisholm, A. Nakamura, S. J. Pennycook, T. Yamamoto and Y. Ikuhara: Science 316 (2007) 82–85.
  24. J. B. Bilde-Sørensen, A. R. Thölen, D. J. Gooch and G. W. Groves: Phil. Mag. 33 (1976) 877–889.
  25. J. Castaing, J. Cadoz and S. H. Kirby: J. Am. Ceram. Soc. 64 (1981) 504–511.
  26. J. Cadoz, J. Castaing, D. S. Phillips, A. H. Heuer and T. E. Mitchell: Acta Metall. 30 (1982) 2205–2218.
  27. T. E. Mitchell, B. J. Pletka, D. S. Phillips and A. H. Heuer: Phil. Mag. 34 (1976) 441–451.
  28. K. P. D. Lagerlöf, T. E. Mitchell, A. H. Heuer, J. P. Rivière, J. Cadoz, J. Castaing and D. S. Phillips: Acta Metall. 32 (1984) 97–105.
  29. P. R. Kenway: Phil. Mag. B 68 (1993) 171–183.
  30. A. G. Marinopoulos and C. Elsässer: Phil. Mag. Lett. 81 (2001) 329–338.
  31. M. H. Jhon, A. M. Glaeser and D. C. Chrzan: Phys. Rev. B 71 (2005) 214101.
  32. W. E. Lee and K. P. D. Lagerlöf: J. Electron Microsc. Tech. 2 (1985) 247–258.
  33. J. B. Wachtman Jr. and D. G. Lam Jr.: J. Am. Ceram. Soc. 42 (1959) 254–260.
  34. J. B. Wachtman Jr., W. E. Tefft, D. G. Lam Jr. and R. P. Stinchfield: J. Res. Nat. Bur. Standards 64A (1960) 213–228.
  35. J. H. Gieske and G. R. Barsch: Phys. Stat. Sol. 29 (1968) 121–131.
  36. T. Goto, O. L. Anderson, I. Ohno and S. Yamamoto: J. Geophys. Res. 94 (1989) 7588–7602.
  37. F. C. Frank: Philos. Mag. VII/Ser. 42 (1951) 809–819.


© 2009 The Japan Institute of Metals
Comments to us :