Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2525-2533
© 2007 The Japan Institute of Metals

Effects of Strain Rate and Temperature on the Deformation and Fracture Behaviour of Titanium Alloy

Su-Tang Chiou1,2, Hsien-Lung Tsai1 and Woei-Shyan Lee3

1Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, R. O. China
2Department of Mechanical Engineering, National United University, Miao-Li 360, Taiwan, R. O. China
3Department of Mechanical Engineering, National Cheng Kung University, Tainan 701, Taiwan, R. O. China

The deformation response and fracture behaviour of Ti alloy under strain rates of 8× 102 s-1 to 8× 103 s-1 at temperatures ranging from 25°C to 900°C are studied using split-Hopkinson pressure bar. The mechanical properties and fracture features of the alloy are found to be significantly dependent on both the strain rate and the temperature. At a constant temperature, the flow stress increases with increasing strain rate. However, at a given strain rate, the flow stress reduces as the temperature increases. Furthermore, the fracture strain decreases with increasing temperature prior to phase transformation at 785°C, but increases thereafter as the temperature is further increased. As the strain rate increases, the strain rate sensitivity increases, but the activation volume decreases. However, as the temperature increases, the strain rate sensitivity decreases and the activation volume increases. Optical microscopy (OM) and scanning electron microscopy (SEM) observations reveal that the alloy specimens fracture primarily as the result of the formation of adiabatic shear bands. The fracture surfaces of the impacted specimens exhibit both dimple-like and cleavage-like features. The density of the dimples reflects the toughness of the alloy specimen and is found to vary directly as a function of the strain rate and the temperature.

(Received 2007/3/16; Accepted 2007/6/12; Published 2007/8/22)

Keywords: titanium alloy, strain rate and temperature effects, deformation behaviour, adiabatic shearing.

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. I. Gurappa: Mater. Sci. Eng. A356 (2003) 372–380.
  2. K. Wang: Mater. Sci. Eng. A213 (1996) 134–137.
  3. H. M. Kim, H. Takadama, T. Kokubo, S. Nishiguchi and T. Nakamura: Biomaterials 21 (2000) 353–358.
  4. U. S. Lindholm: J. Mech. Phys. Sol. 12 (1964) 317–335.
  5. P. S. Follansbee: Metals Handbook. Mechanical Testing, J. R. Newby (Ed.), Vol. 8, 9th ed., (ASM, ohio, 1985), pp. 190–192.
  6. Y. B. Xu, W. L. Zhong, Y. J. Chen, L. T. Shen, Q. Lin, L. Y. Bai and M. A. Meyers: Mater. Sci. Eng. A229 (2001) 287–295.
  7. W. S. Lee and T. H. Chen: Scripta Mater. 54 (2006) 1463–1468.
  8. G. Regazzoni and U. F. Kocks: P. S. Follansbee: Acta Metall. 35 (1987) 2865–2875.
  9. W. S. Lee and C. F. Lin: Mater. Sci. Eng. A308 (2001) 124–135.
  10. Y. Lin, J. Zhu and H. Zhou: Metall. Trans. 23A (1992) 335–340.
  11. W. S. Lee and C. Y. Liu: Mater. Sci. Eng. A426 (2006) 101–113.
  12. H. C. Rogers: Ann. Rev. Matr. Sci. 9 (1979) 283–311.
  13. A. E. Bayoumi and J. Q. Xie: Mater. Sci. Eng. A190 (1995) 173–180.
  14. K. Cho, Y. C. Chi and J. Duffy: Metall. Trans. 21A (1990) 1161–1175.
  15. S. C. Liao and J. Duffy: J. Mech. Phys. Solids, 46 (1998) 2201–2231.
  16. R. Nakkalil, J. R. Hornaday Jr and M. N. Bassim: Mater. Sci. Eng. A141 (1991) 247–260.
  17. Y. L. Bai and B. Dodd: Adiabatic Shear Localization, 1st ed., (Pergamon, Oxford, UK, 1992), pp. 155–193.
  18. Y. Okazaki: Biomaterials 23 (2002) 2071–2077.
  19. K. Tokaji and H. Kariya: Mater. Sci. Eng. A281 (2000) 268–274.
  20. K. Tokaji, H. Shiota and J. C. Bian: Mater. Sci. Eng. A243 (1998) 155–162.
  21. T. Shirakashi, K. Maekawa and E. Usui: Bull. Jpn. Soc. Prec. Eng. 17 (1983) 161–166.
  22. G. L. Wulf: Int. J. Mech. 20 (1978) 609–615.
  23. J. L. Chiddister and L. E. Malvern: Exp. Mech. 3 (1963) 81–90.
  24. W. S. Lee and C. F. Lin: Mater. Sci. Eng. A241 (1998) 48–59.
  25. K. Tokaji, H. Shiota and J. C. Bian: Mater. Sci. Eng. A243 (1998) 155–162.
  26. F. Appel, U. Lorenz, M. Oehring, U. Sparka and R. Wagner: Mater. Sci. Eng. A233 (1997) 1–14.


© 2007 The Japan Institute of Metals
Comments to us :