Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2506-2512
© 2007 The Japan Institute of Metals

Fabrication and Thermal Properties of Carbon Nanotube/Nickel Composite by Spark Plasma Sintering Method

Shunsuke Yamanaka1, Ryohei Gonda1, Akira Kawasaki1, Hiroki Sakamoto2, Yutaka Mekuchi2, Masaki Kuno2 and Takayuki Tsukada3

1Department of Materials Processing Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
2Material Research Laboratory, Nissan Motor Co., Ltd., Yokosuka 237-0061, Japan
3Nano carbon technologies Inc., Tokyo 194-0014, Japan

Multiwall carbon nanotube (MWNT) materials are attractive because they possess excellent thermal conductivity and mechanical properties. However, few reports exist that focus on improving the thermal conductivity of MWNT by combining it with a metal matrix. Thus to improve the thermal conductivity, a nickel-matrix composite with MWNT was prepared by slurry mixing process using ethanol as a solvent. Using spark plasma sintering (SPS), MWNT/Nickel nanocomposites were fabricated and the fabrication conditions were investigated. The sintered relative densities of the composites containing up to 5 vol% of MWNT were above 99%. The thermal and electrical behaviors of the MWNT/Nickel composites were determined using the laser flash and van der Pauw methods, respectively, and were found to be anisotropic. The thermal conductivity was found to increase by 10% for the composition with 3 vol% MWNT.

(Received 2007/4/12; Accepted 2007/6/19; Published 2007/8/1)

Keywords: carbon nanotube, metal matrix composite, thermal conductivity, electrical conductivity, spark plasma sintering, nanocomposite

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. S. Iijima: Nature 354 (1991) 56–58.
  2. Y. S. Song and J. R. Youn: Carbon 44 (2006) 710–717.
  3. M. B. Bryning, D. E. Milkie, M. F. Islam, J. M. Kikkawa and A. G. Yodh: Appl. Phys. Lett. 87 (2005) 161909.
  4. S. Song and J. R. Youn: Carbon 43 (2005) 1378–1385.
  5. G. D. Zhan and A. K. Mukherjee: Int. J. Appl. Ceram. Technol. 1 (2004) 161–171.
  6. R. Watanabe and Y. Masuda: J. Japan Inst. Metals 45 (1981) 781–789.
  7. C. R. Barrett, W. D. Nix and A. S. Tetelman: Zairyoukagaku1 (Baifuudou, 1979) pp. 200–201.
  8. E. Flahaut, A. Peigney, Ch. Laurent, Ch. Marlie, F. Chastel and A. Rousset: Acta Mater. 48 (2000) 3803–3812.
  9. P. Kim, L. Shi, A. Majumdar and P. L. McEuen: Phys. Rev. Lett. 87 (2001) 215502.
  10. S. Berber, Y. K. Kwon and D. Tomanek: Phys. Rev. Lett. 84 (2000) 4613–4616.
  11. J. Che, T. Cagin and W. A. Goddard: Nanotechnology 11 (2000) 65–69.
  12. C. W. Nan, Z. Shi and Y. Lin: Chem. Phys. Lett. 375 (2003) 666–669.
  13. J. Hone, M. C. Llaguno, N. M. Nemes, A. T. Johnson, J. E. Fischer, D. A. Walters, M. J. Casavant, J. Schmidt and R. E. Smalley: Appl. Phys. Lett. 77 (2000) 666–668.
  14. H. Stahl, J. Appenzeller, R. Martel, Ph. Avouris and B. Lengeler: Phys. Rev. Lett. 85 (2000) 5186–5189.
  15. K. Kaneto, K. Tsuruta, M. Sakai, W. Y. Cho and Y. Ando: Synthetic Met. 103 (1999) 2543–2546.
  16. J. Hone, M. Whitney, C. Piskoti and A. Zettl: Phys. Rev. B 59 (1999) 2514–2516.
  17. L. Chico, L. X. Mendic, S. G. Louie and M. L. Cohen: Phys. Rev. B 54 (1996) 2600.
  18. A. Kanda and K. Tsukagoshi: Parity 18 (2003) 36–40.
  19. S. Frank, P. Poncharal, Z. L. Wang and W. A. de Heer: Science 280 (1998) 1744.
  20. A. Urbina, I. Echeverria and J. Abellan: Phys. Rev. Lett. 90 (2003) 106603.


© 2007 The Japan Institute of Metals
Comments to us :