Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2464-2466
© 2007 The Japan Institute of Metals

Preparation of TiO2 Nanotubes and Their Photocatalytic Properties in Degradation Methylcyclohexane

Wen Liu, Jianqin Gao, Fengbao Zhang and Guoliang Zhang

School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China

The tubular TiO2 photocatalysts were successfully synthesized by hydrothermal method. The external tube diameters fall in 8 and 12 nm and the internal diameters are between 5 and 8 nm. Moreover, the lengths of the nanotubes are up to 500 nm and the specific surface area increases to 330 m2/g, while TiO2 powders are 78 m2/g. Methylcyclohexane (MCH) was selected as the target pollutant to investigate the photocatalytic performance. The results indicate that TiO2 nanotubes accelerate the degradation of MCH under the same conditions, comparing with TiO2 nanoparticles. Finally, the degradation reaction shows a first order kinetics.

(Received 2007/3/22; Accepted 2007/7/2; Published 2007/8/22)

Keywords: titanium oxide, nanotubes, photocatalysis, methylcyclohexane, kinetics

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. A. Fujishima and K. Honda: Nature 238 (1972) 37–38.
  2. H. Yamashita, Y. Ichihashi and M. Anpo: Hyomen Kagaku 16 (1995) 194–199.
  3. T. Kasuga, M. Hiramatu, M. Hirano, A. Hoson and K. Oyamada: J. Mater. Res. 12 (1997) 607–613.
  4. B. Wawrzyniak and A. W. Morawski: App. Cata. B: Envir. 62 (2006) 150–158.
  5. J. G. Yu, H. G. Yu, C. H. Ao, S. C. Lee, J. C. Yu and W. K. Ho: Thin Solid Films 496 (2006) 273–280.
  6. X. G. Hou, F. H. Hao, B. Fan, X. N. Gu, X. Y. Wu and A. D. Liu: Nucl. Instrum. Meth. B 243 (2006) 99–102.
  7. S. Rengaraj and X. Z. Li: J. Mol. Cata. A: Chem. 243 (2006) 60–67.
  8. H. C. Lee and W. S. Hwang: Mater. Trans. 46 (2005) 1942–1949.
  9. D. F. Wang and J. H. Ye: Mater. Trans. 46 (2005) 2699–2703.
  10. C. H. Kwon, H. Shin, J. H. Kim, W. S. Choi and K. H. Yoon: Mater. Chem. Phys. 86 (2004) 78–82.
  11. J. C. Xu, M. Lu, X. Y. Guo and H. L. Li: J. Mol. Cata. A: Chem. 226 (2005) 123–127.
  12. R. W. Kerr: Chemistry and Industry of Starch (Academic Press, New York, 1950) pp. 325–328.
  13. S. Ikeno, T. Kawabata, H. Hayashi, K. Matsuda, S. Rengakuji, T. Suzuki, Y. Hatano and K. Tanaka: Mater. Trans. 43 (2002) 939–945.
  14. T. Lindstrom and C. Soermark: Thin Solid Films & Interface Sci. 55 (1976) 305–312.
  15. S. D. Hammid and D. C. Sherrington: Polym. 28 (1987) 325–331.
  16. T. Kasuga: Thin Solid Films 496 (2006) 141–145.
  17. X. M. Sun and Y. D. Li: Chem. Eur. J. 9 (2003) 2229–2238.
  18. R. Ma, Y. Bando and T. Sasaki: Chem. Phys. Lett. 380 (2003) 577–582.
  19. C. C. Tsai and H. Teng: Chem. Mater. 16 (2004) 4352–4358.
  20. Y. Lan, X. Gao, H. Zhu, Z. Zheng, T. Yan, F. Wu, S. P. Ringer and D. Song: Adv. Funct. Mater. 15 (2005) 1310–1318.
  21. C. Ren, B. Zhong, H. Liu and Y. Zhang: J. Chem. Eng. Chin. Univ. 18 (2004) 57–61.
  22. S. Lijima: Nature 354 (1991) 56–58.
  23. N. Doucet, F. Bocquillon, O. Zahraa and M. Bouchy: Chemosphere 65 (2006) 1188–1196.


© 2007 The Japan Institute of Metals
Comments to us :