Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2432-2435
© 2007 The Japan Institute of Metals

Mechanical Behavior of Ti3AlC2 Prepared by Pulse Discharge Sintering Method

Yong Zou1,2, ZhengMing Sun1, Hitoshi Hashimoto1 and Shuji Tada1

1Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan
2Institute of Thermal Science and Technology, Shandong University, Jinan 250061, P. R. China

Almost single-phase ternary compound Ti3AlC2 was successfully synthesized by pulse discharge sintering (PDS) from Ti/Al/TiC powder mixtures with molar ratio of 2:2:3. The typical microstructure of Ti3AlC2 was found to consist of plate-like grains with mean size of 9.5 μm in length. Four-point bending testing results revealed that the fracture behavior is brittle below 1200°C, and some characteristics of plastic deformation were observed at higher testing temperatures. The polycrystalline Ti3AlC2 synthesized by PDS technique shows good strength at high temperatures.

(Received 2007/4/23; Accepted 2007/7/18; Published 2007/8/22)

Keywords: Ti3AlC2, Pulse discharge sintering, Bending deformation, Strength, Fracture

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. M. W. Barsoum, D. Brodkin and T. El-Raghy: Scripta Mater. 36 (1997) 535–541.
  2. X. H. Wang and Y. C. Zhou: J. Mater. Chem. 12 (2002) 455–460.
  3. M. A. Pietzka and J. C. Schuster: J. Phase Equilib. 15 (1994) 392–400.
  4. N. V. Tzenov and M. W. Barsoum: J. Am. Ceram. Soc. 83 (2000) 825–832.
  5. X. H. Wang and Y. C. Zhou: Acta. Mater. 50 (2002) 3141–3149.
  6. A. G. Zhou, C. A, Wang and Y. Huang: Mater. Sci. Eng. A 352 (2003) 333–339.
  7. J. Q. Zhu, B. C. Mei, J. Liu and X. W. Xu: J. Mater. Sci. Lett. 22 (2003) 1111–1112.
  8. J. Q. Zhu, B. C. Mei, J. Liu and X. W. Xu: Mater. Lett. 58 (2004) 588–591.
  9. A. G. Zhou, C. A. Wang and Y. Huang: J. Mater. Sci. 38 (2003) 3111–3115.
  10. Z. B. Ge, K. X. Chen, J. M. Guo, H. P. Zhou and J. M. F. Ferreira: J. Eur. Ceram. Soc. 23 (2003) 567–574.
  11. Y. Khoptiar, I. Gotman and E. Y. Gutmanas: J. Am. Ceram. Soc. 88 (2005) 28–33.
  12. Y. Zou, Z. M. Sun, S. Tada and H. Hashimoto: Scripta Mater. 55 (2006) 767–770.
  13. W. B. Zhou, B. C. Mei, J. Q. Zhu and X. L. Hong: J. Mater. Sci. 40 (2005) 2099–2100.
  14. J. Q. Zhu, B. C. Mei, J. Liu and X. W. Xu: Mater. Lett. 58 (2004) 588–591.
  15. Y. Zou, Z. M. Sun, S. Tada and H. Hashimoto: J. Alloys Compd. (2007) doi:10.1016/j.jallcom.2007.02.105.
  16. M. Tokita: J. Soc. Powder Tech. Jpn. 30 (1996) 790–804.
  17. K. Murakami, T. Hatayama and O. Yanagisama: Intermetallics 7 (1999) 1049–1057.
  18. T. Murakami, M. Komatsu, A. Kitahara, M. Kawahara, Y. Takahashi and Y. Ono: Intermetallics 7 (1999) 731–739.
  19. Z. F. Zhang, Z. M. Sun and H. Hashimoto: Adv. Eng. Mater. 6 (2004) 980–983.
  20. N. F. Gao, Y. Miyamoto and D. Zhang: J. Mater. Sci. 34 (1999) 4385–4392.
  21. Z. F. Zhang, Z. M. Sun and H. Hashimoto: Mater. Lett. 57 (2003) 1295–1299.
  22. T. El-Raghy, A. Zavaliangos, M. W. Barsoum and S. R. Kalidindi: J. Am. Ceram. Soc. 80 (1997) 513–516.
  23. J. F. Li, W. Pan, F. Sato and R. Watanabe: Acta. Mater. 49 (2001) 937–945.


[JIM HOME] [JOURNAL ARCHIVES]

© 2007 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp