Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2419-2421
© 2007 The Japan Institute of Metals

Molecular Dynamics Simulation of Thermal Conductivity of Silicon Thin Film

Haitao Wang1, Yibin Xu1, Masato Shimono2, Yoshihisa Tanaka3 and Masayoshi Yamazaki1

1Materials Database Station, National Institute for Materials Science, Tokyo 153-0061, Japan
2Computational Materials Science Center, National Institute for Materials Science, Tsukuba 305-0047, Japan
3Composites and Coatings Center, National Institute for Materials Science, Tsukuba 305-0047, Japan

We computed the thermal conductivity of silicon single crystal thin film with a thickness of 25 nm–134 nm at room temperature by non-equilibrium molecular dynamics simulation. The thermal conductivity was shown to depend on the thickness of the film, and is markedly lower than that in bulk silicon. The phonon classical thermal conductivity theory, incorporating the Boltzmann transport equation, was used to establish a phonon scattering model for size dependence. The results show that boundary scattering is very strong for phonon transport in silicon thin film.

(Received 2007/4/23; Accepted 2007/7/6; Published 2007/8/25)

Keywords: silicon thin film, thermal conductivity, molecular dynamics, Boltzmann transport equation, phonon boundary scattering

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin and S. R. Phillpot: J. Appl. Phys. 93 (2003) 793–818.
  2. A. D. McConnell and K. E. Goodson: Annual review of heat transfer. 14 (2005) 129–168.
  3. M. Ashegi, Y. K. Leung, S. Wong and K. E. Goodson: Appl. Phys. Lett. 71 (1997) 1798–1800.
  4. P. Jund and R. Jullien: Phys. Rev. B. 59 (1999) 13707–13711.
  5. Y. G. Yoon, R. Car and D. J. Srolovitz: Phys. Rev. B. 70 (2004) 012302.
  6. P. Heino: Phys. Rev. B. 71 (2005) 144302.
  7. C. Oligschleger and J. C. Schon: Phys. Rev. B. 59 (1999) 4125–4133.
  8. H. J. Castejon: J. Phys. Chem. B. 107 (2003) 826–828.
  9. P. K. Schelling, S. R. Phillpot and P. Keblinski: Phys. Rev. B. 65 (2002) 144306.
  10. J. Tersoff: Phys. Rev. Lett. 56 (1986) 632–635.
  11. M. G. Holland: Phys. Rev. 132 (1963) 2461–2471.
  12. E. H. Sondheimer: Adv. Phys. 1 (1952) 1–42.
  13. G. Chen: Phys. Rev. B. 57 (1998) 14958–14973.
  14. Y. S. Ju and K. E. Goodson: Appl. Phys. Lett. 74 (1999) 3005–3007.
  15. W. Liu and M. Asheghi: Appl. Phys. Lett. 74 (2004) 3819–3821.


© 2007 The Japan Institute of Metals
Comments to us :