Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2414-2418
© 2007 The Japan Institute of Metals

Magnetic Phase Transition of MnBi under High Magnetic Fields and High Temperature

Keiichi Koyama1, Tetsuya Onogi1, Yoshifuru Mitsui1, Yuko Nakamori2, Shin-ichi Orimo2 and Kazuo Watanabe1

1High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Magnetization measurements and differential thermal analysis (DTA) of polycrystalline MnBi were carried out in magnetic fields up to 14 T and in 300–773 K, in order to investigate the magnetic phase transition. The magnetic phase transition temperature (Tt) at a zero magnetic field is 628 K and linearly increases with increasing fields up to 14 T at the rate of 2 KT-1. A metamagnetic transition between the paramagnetic and field-induced ferromagnetic states was observed just above Tt. The exothermic and endothermic peaks were detected in the magnetic field dependence of DTA signals in 626–623 K, which relates to the metamagnetic transition. The obtained results were discussed on the basis of a mean field theory.

(Received 2007/4/23; Accepted 2007/7/6; Published 2007/8/22)

Keywords: MnBi compound, high magnetic field, differential thermal analysis, metamagnetic transition, first order transition

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. C. Gullaud: J. Phys. Radium 12 (1951) 143–143.
  2. C. Gullaud: J. Phys. Radium 12 (1951) 223–227.
  3. C. Gullaud: J. Phys. Radium 12 (1951) 492–497.
  4. R. R. Heikes: Phys. Rev. 99 (1955) 446–447.
  5. B. W. Roberts: Phys. Rev. 104 (1956) 607–616.
  6. B. A. Huberman and W. Streifer: Phys. Rev. B 12 (1975) 2741–2746.
  7. T. Chen: J. Appl. Phys. 45 (1974) 2358–2360.
  8. Y. Liu, J. Zhang, S. Cao, G. Jia, X. Zhang, Z. Ren, X. Li, C. Jing and K. Deng: Solid State Commun. 138 (2006) 104–109.
  9. H. Yoshida, T. Shima, T. Takahashi and H. Fujimori: Mater. Trans. 40 (1999) 455–458.
  10. H. Yoshida, T. Shima, T. Takahashi, H. Fujimori, S. Abe, T. Kaneko, T. Kanomata, T. Suzuki: J. Alloy. Comp. 317–318 (2001) 297–301.
  11. J. B. Yang, K. Kamaraju, W. B. Yelon, W. J. James, Q. Cai and A. Bollero: Appl. Phys. Lett. 79 (2001) 1846–1848.
  12. J. B. Yang, W. B. Yelon, W. J. James, Q. Cai, M. Kornecki, S. Roy, N. Ali and Ph l'Heritier: J. Phys.: Condens Matter 14 (2002) 6509–6519.
  13. T. Onogi, K. Koyama and K. Watanabe: J. Jpn. Inst. Met. 71 (2007) 489–493.
  14. S. Awaji, K. Watanabe and M. Motokawa: J. Crystal Growth 226 (2001) 83–87.
  15. V. K. Pecharsky and K. A. Gschneider Jr.: Phys. Rev. Lett. 78 (1997) 4494–4497.
  16. O. Tegus, E. Brück, K. H. J. Buschow and F. R. de Boer: Nature 415 (2002) 150–152.
  17. J. R. Miller, M. D. Bird, S. Bole, A. Bonito-Oliva, Y. Eyss, W. J. Kenney, T. A. Painter, H.-J. Schneider-Mumtau, L. T. Summers, S. W. Van Sciver, S. Welton, R. J. Wood, J. E. C. Williams, E. Bovrov, Y. Iwasa, M. Leupold, V. Stejskal and R. Weggel: IEEE Trans. Mang. 30 (1994) 1563–1570.


© 2007 The Japan Institute of Metals
Comments to us :