Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2395-2398
© 2007 The Japan Institute of Metals

Hydrogen Storage Properties and Corresponding Phase Transformations of Mg/Pd Laminate Composites Prepared by a Repetitive-Rolling Method

Nobuhiko Takeichi1, Koji Tanaka1, Hideaki Tanaka1, Tamotsu T. Ueda2, Makoto Tsukahara2, Hiroshi Miyamura3 and Shiomi Kikuchi3

1National Institute of Advanced Industrial Science and Technology (AIST), Ikeda 563-8577, Japan
2IMRA Material R&D Co. Ltd., Kariya 448-0021, Japan
3Department of Materials Science, University of Shiga Prefecture, Hikone 522-0057, Japan

Mg/Pd laminate composites (Mg/Pd = 6) prepared by a repetitive-rolling method can reversibly absorb and desorb a large amount of hydrogen, up to 1.47 H/M (4 mass%) at 573 K. Pressure-composition isotherms of the Mg/Pd laminate composites show two plateaux, PL=0.2 MPa and PH=2 MPa, during hydrogen absorption and desorption. To clarify the correlation between hydrogen storage properties and phase transformations, we investigated structural changes of the Mg6Pd intermetallic compound with in-situ XRD. The low-pressure plateau PL corresponds to the decomposition of Mg6Pd into Mg5Pd2 and MgH2, and the high-pressure plateau PH to the decomposition of Mg5Pd2 into MgPd and MgH2. In subsequent dehydrogenation processes, part of the MgH2 reformed Mg, and the Mg and MgPd form Mg5Pd2 at the high-pressure plateau PH and then the remaining MgH2 reformed Mg, and the Mg and Mg5Pd2 form Mg6Pd at the low-pressure plateau PL. According to this mechanism, the Mg6Pd can absorb and desorb hydrogen through reversibly disproportionation and recombination processes.

(Received 2007/4/24; Accepted 2007/6/28; Published 2007/8/25)

Keywords: hydrogen storage material, magnesium, laminate composite, in-situ X-ray diffraction

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. J. F. Stampfer, Jr., C. E. Holley, Jr. and J. F. Suttle: J. Am. Chem. Soc. 82 (1960) 3504–3508.
  2. J. J. Reilly and R. H. Wiswall: Inorg. Chem. 6 (1967) 2220–2223.
  3. J. J. Reilly and R. H. Wiswall: Inorg. Chem. 7 (1968) 2254–2256.
  4. L. Zaluski, A. Zaluska and J. O. Strom-Olsen: J. Alloys Comp. 217 (1995) 245–249.
  5. K. J. Gross, P. Spatz, A. Züttel and L. Schlapbach: J. Alloys Comp. 261 (1997) 276–280.
  6. S. Orimo, H. Fujii and K. Ikeda: Acta mater. 45 (1997) 331–341.
  7. G. Liang, J. Huot, S. Boily, A. Van Neste and R. Schulz: J. Alloys Compd. 291 (1999) 295–299.
  8. G. Liang, J. Huot, S. Boily, A. Van Neste and R. Schulz: J. Alloys Compd. 292 (1999) 247–252.
  9. G. Liang, J. Huot, S. Boily and R. Schulz: J. Alloys Compd. 305 (2000) 239–245.
  10. T. T. Ueda, M. Tsukahara, Y. Kamiya and S. Kikuchi: Collected Abstracts of the Spring Meeting of the Japan Inst. Metals, (2004) p. 170.
  11. G. K. Schoep, N. J. Poulis and R. R. Arons: Physica 75 (1974) 297–304.
  12. M. Tsukahara, T. T.Ueda, K. Tanaka, N. Takeichi, H. Tanaka, H. Miyamura and S. Kikuchi: Proc. The 16th World Hydrogen Energy Conference, (Lyon, 2006) ref. 564 pp. 1–9.
  13. Y. Kume and J. Weiss: J. Less-Common Met. 136 (1987) 51–54.
  14. J. Dufour and J. Huot: J. Alloys Comp., 2006, doi:10.1016/j.jallcom.2006.11.191.
  15. T. T. Ueda, M. Tsukahara, Y. Kamiya and S. Kikuchi: J. Alloys & Comp. 386 (2005) 253–257.
  16. T. B. Massalski et al.: Binary Alloy Phase Diagrams, Second Edition, vol. 3, (ASM International, Ohio, 1996) 2535–2536.
  17. E. M. Savitskii, V. F. Terekhova and N. A. Birun: Zh. Neorg. Khim. 7 (1962) 2367–2373.
  18. N. Takeichi, K. Tanaka, H. Tanaka, T. T. Ueda, Y. Kamiya, M. Tsukahara, H. Miyamurac and S. Kikuchi: Proc. The 16th World Hydrogen Energy Conference, (Lyon, 2006) ref. 465 pp. 1–9.
  19. N. Takeichi, K. Tanaka, H. Tanaka, T. T. Ueda, Y. Kamiya, M. Tsukahara, H. Miyamurac and S. Kikuchi: J. Alloys Comp. (2006), doi:10.1016/j.jallcom.2007.04.220.


[JIM HOME] [JOURNAL ARCHIVES]

© 2007 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp