Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2385-2389
© 2007 The Japan Institute of Metals

Formation and Thermal Stability of Ni-Based Bulk Metallic Glasses in Ni-Zr-Nb-Al System

J. B. Qiang, W. Zhang and A. Inoue

Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577, Japan

An Al element was selected as an alloying metal to improve the glass-forming ability (GFA) of Ni-Zr-Nb alloys. The thermal stability and glass-forming ability of Ni-Zr-Nb-Al alloys were investigated. It was found that the partial substitution of Nb by Al led to significant shift of the onset crystallization temperature Tx and the liquidus temperature Tl, while the glass transition temperature Tg was less composition sensitive. The supercooled liquid region, Δ Tx (= Tx - Tg), the reduced glass transition temperature (Tg/Tl) and γ = Tx/(Tg+Tl) increased with increasing Al content up to 5 at%. The best GFA was found at Ni60Zr20Nb15Al5 with a critical diameter of 3 mm. The characteristic parameters are: Δ Tx = 54 K, Tg/Tl = 0.615 and γ = 0.405. The maximum values of Δ Tx and Tg/Tl were 72 K and 0.617, respectively, at Ni60Zr25Nb10Al5. The compression tests showed that the Ni60Zr20Nb15Al5 BMG possessed high fracture strength of 2900 MPa, Young's modul of 152 GPa, and plastic elongation of 2.5% at room temperature.

(Received 2007/4/23; Accepted 2007/6/4; Published 2007/7/19)

Keywords: bulk metallic glass, glass-forming ability, mechanical property

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. A. Inoue: Acta Mater. 48 (2000) 279–306.
  2. W. H. Wang, C. Dong and C. H. Shek: Mater Sci Eng R 44 (2004) 45–89.
  3. W. L. Johnson: MRS Bull. 24 (1999) 42–56.
  4. J. F. Löffler: Intermetallics 11 (2003) 529–540.
  5. A. Inoue, B. L. Shen and A. Takeuchi: Mater. Trans. 47 (2006) 1275–1285.
  6. T. Zhang and A. Inoue: Mater. Trans. 43 (2002) 708–711.
  7. A. Inoue, W. Zhang and T. Zhang: Mater. Trans. 43 (2002) 1952–1956.
  8. W. Zhang and A. Inoue: Mater. Trans. 43 (2002) 2342–2345.
  9. W. Zhang and A. Inoue: Scripta Materialia 48 (2003) 641–645.
  10. H. C. Yim, D. H. Xu and W. L. Johnson: Appl. Phys. Lett. 82 (2003) 1030–1032.
  11. J. K. Lee, D. H. Bae, S. Yi, W. T. Kim and D. H. Kim: J. Non-Cryst. Solids 333 (2004) 212–220.
  12. D. H. Xu, G. Duan, W. L. Johnson and C. Garland: Acta Mater. 52 (2004). 3493–3497.
  13. H. M. Kimura, A. Inoue, S. Yamaura, K. Sasamori, M. Nishida, Y. Shimpo and H. Okouchi: Mater Trans 44 (2003) 1167–1171.
  14. S. Yamaura, M. Sakurai, M. Hasegawa, K. Wakoh, Y. Shimpo, M. Nishida, H. Kimura and A. Inoue: Acta Mater. 53 (2005) 3703–3711.
  15. A. Inoue: Mater. Trans., JIM 36 (1995) 866–875.
  16. Metals Databook, Edited by Japan Inst. Metals, (Maruzen, Tokyo, Japan, 1983), pp. 8.
  17. Z. P. Lu, H. Tan, Y. Li and S. C. Ng: Scripta Mater. 42 (2000) 667–673.
  18. H. A. Davies: Rapidly Quenched Metals III, (The Metals Society, London, 1978), pp. 1–20.
  19. Z. P. Lu and C. T. Liu: Acta Mater. 50 (2002) 3501–3512.
  20. F. R. De Boer, R. Boom, W. C. M. Mattens, A. R. Miedema and A. K. Niessen: Cohesion in Metals, (Elsevier, Amsterdam, 1989), pp. 224.


© 2007 The Japan Institute of Metals
Comments to us :