Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2349-2352
© 2007 The Japan Institute of Metals

Computation of Interfacial Thermal Resistance by Phonon Diffuse Mismatch Model

Haitao Wang1, Yibin Xu1, Masato Shimono2, Yoshihisa Tanaka3 and Masayoshi Yamazaki1

1Materials Database Station, National Institute for Materials Science, Tokyo 153-0061, Japan
2Computational Materials Science Center, National Institute for Materials Science, Tsukuba 305-0047, Japan
3Composites and Coatings Center, National Institute for Materials Science, Tsukuba 305-0047, Japan

The thermal resistances of 1250 kinds of interface were computed at room temperature based on the phonon diffuse mismatch model. The result shows that the ratio of Debye temperature and the ratio of average sound velocity can be approximately used to characterize the difference of two materials in terms of interfacial thermal resistance. The high interfacial thermal resistances are composed of high and low Debye temperature materials. The low interfacial thermal resistances are composed of both similar Debye temperature materials, and their Debye temperatures are very high. The relation between the interfacial thermal resistance with the ratio of average sound velocity is similar to that of the ratio of Debye temperature.

(Received 2007/4/23; Accepted 2007/5/25; Published 2007/8/25)

Keywords: interfacial thermal resistance, phonon diffuse mismatch, average sound velocity, Debye temperature, ratio

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. A. Shakouri: Nanoscale Proceedings of the IEEE 94 (2006) 1613–1638.
  2. R. Prasher: International journal of heat and mass transfer 48 (2005) 4942–4952.
  3. S. M. Lee, D. G. Cahill and R. Venkatasubramanian: Applied physics letters 70 (1997) 2957–2959.
  4. R. J. Stevens, P. M. Norris and L. V. Zhigilet: Proceedings of IMECE 2004, ASME. Paper number IMECE2004-60334.
  5. P. L. Kapitza: Zhurnal Eksperimentalnoi Teoreticheskoi Fiziki 11 (1941) 1–31.
  6. E. T. Swartz and R. O. Pohl: Reviews of Modern Physics 61 (1989) 605–668.
  7. Basic Crystal Structure, NIMS Materials Database, http://mits.nims.go.jp/db_top_eng.htm.
  8. S. P. Nikanorov, Y. A. Burenkov and A. V. Stepanov: Sov. Phys. Solid State 10 (1971) 2516–2519.
  9. D. G. Cahill, W. K. Ford and K. E. Goodson et al.: Applied Physics Reviews 93 (2003) 793–818.
  10. D. G. Cahill: Proceedings of the 26th Japan symposium on thermophysical properties. Tsukuba, Japan 2005, 11. 15–19.


[JIM HOME] [JOURNAL ARCHIVES]

© 2007 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp