Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2329-2335
© 2007 The Japan Institute of Metals

Creep Parameters in a Die-Cast Mg-Al-Ca Alloy

Yoshihiro Terada, Naoya Ishimatsu and Tatsuo Sato

Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan

Tensile creep tests were conducted to determine the creep parameters for a die-cast Mg-Al-Ca alloy AX52 (X representing calcium) in a temperature range from 423 to 498 K. The stress exponent of the minimum creep rate, n, increases at the yield stress of the alloy, and it lowers at higher temperatures. The activation energy for creep, Qc, decreases with increasing applied stress typically below the yield stress. The change in the creep parameters, n and Qc, is associated with the decreased creep strength caused by the collapse of the eutectic intermetallic phase covering the primary α-Mg grains during creep. The thermally activated component of Qc is evaluated to be 143 kJ/mol below the yield stress, which is very close to the activation energy for the lattice self-diffusion of magnesium. It is deduced that the creep for the alloy is controlled by the high-temperature climb of dislocations.

(Received 2007/4/2; Accepted 2007/5/1; Published 2007/7/11)

Keywords: magnesium-aluminum-calcium alloy, die-cast, creep, microstructure, activation energy

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. R. L. Edgar: Magnesium Alloys and Their Applications, ed. by K. U. Kainer (Wiley-VCH, Weinheim, 2000) pp. 3–8.
  2. B. L. Mordike and T. Ebert: Mater. Sci. Eng. A 302 (2001) 37–45.
  3. G. S. Cole: Mater. Sci. Forum 419–422 (2003) 43–50.
  4. S. Das: JOM 55 (2003) 22–26.
  5. T. Kaneko and M. Suzuki: Mater. Sci. Forum 419–422 (2003) 67–72.
  6. P. Bakke and H. Westengen: Adv. Eng. Mater. 5 (2003) 879–885.
  7. H. Gjestland, G. Nussbaum, G. Regazzoni, O. Lohne and O. Bauger: Mater. Sci. Eng. A 134 (1991) 1197–1200.
  8. T. Horie, H. Iwahori, Y. Seno and Y. Awano: Magnesium Technology 2000, ed. by H. I. Kaplan, J. Hryn and B. Clow (TMS, Warrendale, 2000) pp. 261–269.
  9. M. Suzuki, J. Koike, K. Maruyama, T. Tsukeda, K. Saito and H. Kubo: Magnesium Alloys and Their Applications, ed. by K. U. Kainer (Wiley-VCH, Weinheim, 2000) pp. 699–704.
  10. T. Tsukeda, A. Maehara, K. Saito, M. Suzuki, J. Koike, K. Maruyama and H. Kubo: Magnesium Technology 2000, ed. by H. I. Kaplan, J. Hryn and B. Clow (TMS, Warrendale, 2000) pp. 395–402.
  11. D. Wenwen, S. Yangshan, M. Xuegang, X. Feng, Z. Min and W. Dengyun: Mater. Sci. Eng. A 356 (2003) 1–7.
  12. C. Mendis, L. Bourgeois, B. Muddle and J. F. Nie: Magnesium Technology 2003, ed. by H. I. Kaplan (TMS, Warrendale, 2003) pp. 183–188.
  13. Y. Terada, R. Sota, N. Ishimatsu, T. Sato and K. Ohori: Metall. Mater. Trans. A 35A (2004) 3029–3032.
  14. R. Ninomiya, T. Ojiro and K. Kubota: Acta Metall. Mater. 43 (1995) 669–674.
  15. M. Liu, Q. Wang, Z. Liu, G. Yuan, G. Wu, Y. Zhu and W. Ding: J. Mater. Sci. Lett. 21 (2002) 1281–1283.
  16. J. Grobner, D. Kevorkov, I. Chumak and R. Schmid-Fetzer: Z. Metallkde. 94 (2003) 976–982.
  17. K. Ozturk, Y. Zhong, A. A. Luo and Z. K. Liu: JOM 55 (2003) 40–44.
  18. A. Suzuki, N. D. Saddock, J. W. Jones and T. M. Pollock: Scr. Mater. 51 (2004) 1005–1010.
  19. A. Suzuki, N. D. Saddock, J. W. Jones and T. M. Pollock: Acta Mater. 53 (2005) 2823–2834.
  20. Y. Terada, N. Ishimatsu, Y. Mori and T. Sato: Mater. Trans. 46 (2005) 145–147.
  21. A. A. Luo: Mater. Sci. Forum 419–422 (2003) 57–66.
  22. M. O. Pekguleryuz and A. A. Kaya: Adv. Eng. Mater. 5 (2003) 866–878.
  23. H. Westengen: Science and Engineering of Light Metals, ed. by K. Hirano, H. Oikawa and K. Ikeda (The Japan Institute of Light Metals, Tokyo, 1991) pp. 77–84.
  24. K. Lovold: Z. Metallkde. 67 (1976) 514–517.
  25. W. K. Miller: Metall. Trans. A 22A (1991) 873–877.
  26. E. M. Gutman, Y. Unigovski, M. Levkovich, Z. Koren, E. Aghion and M. Dangur: Mater. Sci. Eng. A 234–236 (1997) 880–883.
  27. S. R. Agnew, K. C. Liu, E. A. Kenik and S. Viswanathan: Magnesium Technology 2000, ed. by H. I. Kaplan, J. Hryn and B. Clow (TMS, Warrendale, 2000) pp. 285–290.
  28. M. O. Pekguleryuz: Mater. Sci. Forum 350–351 (2000) 131–140.
  29. W. Blum, P. Zhang, B. Watzinger, B. V. Grossmann and H. G. Haldenwanger: Mater. Sci. Eng. A 319–321 (2001) 735–740.
  30. S. Kamado, I. A. Anyanwu, Y. Oshima and Y. Kojima: Proc. 4th Pacific Rim Int. Conf. on Advanced Materials and Processing, ed. by S. Hanada, Z. Zhong, S. W. Nam and R. N. Wright (The Japan Institute of Metals, Sendai, 2001) pp. 1167–1170.
  31. M. Regev, O. Botstein, M. Bamberger and A. Rosen: Mater. Sci. Eng. A 302 (2001) 51–55.
  32. E. Aghion, B. Bronfin, F. V. Buch, S. Schumann and H. Friedrich: Magnesiun Technology 2003, ed. by H. I. Kaplan (TMS, Warrendale, 2003) pp. 177–182.
  33. I. P. Moreno, T. K. Nandy, J. W. Jones, J. E. Allison and T. M. Pollock: Scr. Mater. 48 (2003) 1029–1034.
  34. M. Vogel, O. Kraft and E. Arzt: Scr. Mater. 48 (2003) 985–990.
  35. M. O. Pekguleryuz and J. Renaud: Magnesium Technology 2000, ed. by H. I. Kaplan, J. Hryn and B. Clow (TMS, Warrendale, 2000) pp. 279–284.
  36. A. A. Luo, M. P. Balogh and B. R. Powell: Metall. Mater. Trans. A 33A (2002) 567–574.
  37. Y. Terada, N. Ishimatsu, R. Sota, T. Sato and K. Ohori: Mater. Sci. Forum 419–422 (2003) 459–464.
  38. A. Suzuki, N. D. Saddock, J. W. Jones and T. M. Pollock: Magnesium Technology 2005, ed. by N. R. Neelameggham, H. I. Kaplan and B. R. Powell (TMS, Warrendale, 2005) pp. 111–116.
  39. O. D. Sherby and P. M. Burke: Progr. Mater. Sci. 13 (1968) 325–390.
  40. R. W. Evans and B. Wilshire: Creep of Metals and Alloys, (The Institute of Metals, London, 1985).
  41. J. Cadek: Creep in Metallic Materials, (Elsevier, Amsterdam, 1988).
  42. M. E. Kassner and M. T. Perez-Prado: Fundamentals of Creep in Metals and Alloys, (Elsevier, Amsterdam, 2004).
  43. N. Ishimatsu, Y. Terada, T. Sato and K. Ohori: Metall. Mater. Trans. A 37A (2006) 243–248.
  44. K. Ozturk, Z. K. Liu and A. A. Luo: Magnesium Technology 2003, ed. by H. I. Kaplan (TMS, Warrendale, 2003) pp. 195–200.
  45. P. E. Bennett and G. M. Sinclair: Trans. ASME, Ser. D 88 (1966) 518–524.
  46. A. K. Shoemaker and S. T. Rolfe: Eng. Fract. Mech. 2 (1971) 319–339.
  47. K. Milicka, J. Cadek and P. Rys: Acta Metall. 18 (1970) 1071–1082.
  48. S. S. Vagarali and T. G. Langdon: Acta Metall. 29 (1981) 1969–1982.
  49. S. S. Vagarali and T. G. Langdon: Acta Metall. 30 (1982) 1157–1170.
  50. Y. Mori, Y. Terada and T. Sato: Mater. Trans. 46 (2005) 1749–1752.
  51. T. Matsuo, K. Nakajima, Y. Terada and M. Kikuchi: Mater. Sci. Eng. A 146 (1991) 261–272.
  52. P. G. Shewmon and F. N. Rhines: Trans. AIME 200 (1954) 1021–1025.
  53. P. G. Shewmon: Trans. AIME 206 (1956) 918–922.
  54. G. Moreau, J. A. Cornet and D. Calais: J. Nucl. Mater. 38 (1971) 197–202.
  55. J. Cadek, V. Sustek, L. Kloc and E. Evangelista: Mater. Sci. Eng. A 215 (1996) 73–83.
  56. J. G. Wang, L. M. Hsiung, T. G. Nieh and M. Mabuchi: Mater. Sci. Eng. A 315 (2001) 81–88.


[JIM HOME] [JOURNAL ARCHIVES]

© 2007 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp