Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2285-2288
© 2007 The Japan Institute of Metals

Faceted Crystal Growth of Silicon from Undercooled Melt of Si-20 mass%Ni Alloy

Tsukasa Takazawa, Minoru Ikeda and Toshio Suzuki

Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan

Two-dimensional faceted crystal growth of silicon from undercooled melt of Si-20 mass%Ni alloy was experimentally investigated, in which a droplet sample from 10 to 100 mg was undercooled on a single-crystal sapphire and growing crystals were observed in situ. Observed crystals were classified according to the shapes of square, wedge and irregular shapes. The growth velocity was measured for different undercooling conditions. The growth velocity of square shaped crystals was about half times smaller than that of wedge shaped crystals. The growth of square shaped crystals is regarded to be two-dimensional and it is compared with the results of two-dimensional phase-field simulations. Growth velocity in both is in good agreement and the linear kinetic coefficient is estimated to be 0.002 m/sK.

(Received 2007/2/27; Accepted 2007/5/14; Published 2007/8/25)

Keywords: faceted crystal growth, silicon, undercooling, phase-field models

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. E. Billig: Proc. Roy. Soc. A 229 (1955) 346.
  2. D. R. Hamilton and R. G. Seidensticker: J. Appl. Phys. 31 (1960) 1165.
  3. R. S. Wagner: Acta Metall. 8 (1960) 57.
  4. G. Devaud and D. Turnbull: Acta Metall. 35 (1987) 765.
  5. C. F. Lau and H. W. Kui: Acta Metall. Mater. 39 (1991) 323.
  6. C. F. Lau and H. W. Kui: Acta Metall. Mater. 41 (1993) 1999.
  7. C. F. Lau and H. W. Kui: Acta Metall. Mater. 42 (1994) 3811.
  8. S. E. Battersby, R. F. Cochrane and A. M. Mullis: J. Mater. Sci. 34 (1999) 2049.
  9. D. Li, T. Volkmann, K. Eckler and D. M. Herlach: J. Crystal Growth 152 (1995) 101.
  10. D. Li and D. M. Herlach: Phys Rev. Lett. 77 (1996) 1801.
  11. D. Li, K. Eckler and D. M. Herlach: Acta Mater. 44 (1996) 2437.
  12. R. P. Liu, T. Volkmann and D. M. Herlach: Acta Mater. 49 (2001) 439.
  13. T. Aoyama, Y. Takamura and K. Kuribayashi: Metall. Mater. Trans. A 30 (1999) 1333.
  14. Aoyama and K. Kuribayashi: Acta Mater. 48 (2000) 3739.
  15. T. Aoyama and K. Kuribayashi: Mater. Sci. Eng. A 304 (2001) 231.
  16. T. Aoyama and K. Kuribayashi: Acta Mater. 51 (2003) 2297.
  17. W. J. Boettinger, S. R. Coriell and R. Trivedi: Rapid Solidification Processing: Princeples and Technologies IV, ed by R. Mehrabian, P. A. Parrish, (Claitor's Baton Rouge, 1988) 13.
  18. J. Lipton, W. Kurz and R. Trivedi: Acta Metall. 35 (1987) 957.
  19. J. J. Eggleston, G. B. McFadden and P. W. Voorhees: Physica D 150 (2001) 91.
  20. J.-M. Debierre, A. Karma, F. Celestini and R. Guerin: Phys. Rev. E 68 (2003) 041604.
  21. T. Uehara and R. F. Sekerka: J. Crystal Growth 254 (2003) 251.
  22. H. Kasajima, E. Nagano, T. Suzuki, S. G. Kim and W. T. Kim: Sci. Tech. Adv. Mater. 4 (2003) 553.
  23. H. Kasajima, T. Suzuki, S. G. Kim and W. T. Kim: J. Mater. Res. Soc. Japan 29 (2004) 3779.
  24. T. Suzuki, S. G. Kim and W. T. Kim: Mater. Sci. Eng. A, 449–551 (2007) 99.
  25. K. Nagashio and K. Kuribayashi: Acta Mater. 53 (2005) 3021.
  26. K. Nagashio: private communication.
  27. T. Suzuki, S. Toyoda, T. Umeda and Y. Kimura: J. Crystal Growth 38 (1977) 123.
  28. M. H. Grabow, G. H. Gilmer and A. F. Baker: MRS Symp. Proc. 141 (1989) 349.
  29. K. M. Beatty and K. A. Jackson: J. Crystal Growth 211 (2000) 13–17.
  30. M. Iwamatsu and K. Horii: Physics Lett. A 214 (1996) 71–75.
  31. G. J. Galvin, J. W. Mayer and P. W. Peercy: Appl. Phys. Lett. 46 (1985) 644
  32. G. D. Ivlev and E. I. Gatskevich: Appl. Surface Sci. 143 (1999) 265–271.
  33. K. Kuniyoshi, K. Ozono, M. Ikeda, T. Suzuki, S. G. Kim and W. T. Kim: Sci. Tech. Adv. Maters. 7 (2006) 595.


[JIM HOME] [JOURNAL ARCHIVES]

© 2007 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp