Materials Transactions Online

Materials Transactions, Vol.48 No.09 (2007) pp.2263-2271
© 2007 The Japan Institute of Metals

Thermodynamic Analysis of the Phase Equilibria in the Nb-Ni-Zr System

Tatsuya Tokunaga1, Satoshi Matsumoto2, Hiroshi Ohtani3 and Mitsuhiro Hasebe3

1Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kitakyushu 804-8550, Japan
2Graduate School of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
3Department of Materials Science and Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan

A thermodynamic study of phase equilibria in the Nb-Ni-Zr system has been carried out experimentally and using the CALPHAD method. To enable the thermodynamic description of the constituent binary systems, the results from a previous evaluation were adopted for the Nb-Ni, Ni-Zr and Nb-Zr systems. However, some modifications of the thermodynamic parameters of the Ni-Zr system were made based on recent experimental data on the binary and ternary phase equilibria. The phase boundaries involving the liquid phase in the Nb-Ni-Zr ternary system at the constant 60 mol%Ni and 20 mol%Zr were determined experimentally using differential scanning calorimetry (DSC). The thermodynamic parameters of the Nb-Ni-Zr ternary system were evaluated by combining the experimental results from DSC with reported phase boundaries of the isothermal sections at 773 and 1073 K. The calculated results reproduced the DSC results as well as the experimental isothermal sections. Furthermore, the amorphous-forming ability of Nb-Ni-Zr ternary alloys was evaluated by incorporating the thermodynamic properties from the phase diagram calculations into the Davies-Uhlmann kinetic formulations. The calculated critical cooling rates in the observed metallic glass forming compositional range were found to be lower than those in the observed amorphous forming range by one or more orders of magnitude.

(Received 2007/3/19; Accepted 2007/4/6; Published 2007/8/25)

Keywords: phase diagram, thermodynamic analysis, liquidus surface, amorphous-forming ability, critical cooling rate, calculation of phase diagrams (CALPHAD)

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. H. Kimura, A. Inoue, S. Yamaura, K. Sasamori, M. Nishida, Y. Shinpo and H. Okouchi: Mater. Trans. 44 (2003) 1167–1171.
  2. S. Yamaura, Y. Shinpo, H. Okouchi, M. Nishida, O. Kajita, H. Kimura and A. Inoue: Mater. Trans. 44 (2003) 1885–1890.
  3. S. Yamaura, M. Sakurai, M. Hasegawa, K. Wakoh, Y. Shinpo, M. Nishida, H. Kimura, E. Matsubara and A. Inoue: Acta Mater. 53 (2005) 3703–3711.
  4. A. D. Evdokimova, S. M. Kuznetsova, G. N. Ronami and E. M. Sokolovskaya: Moscow Univ. Chem. Bull., Translated from Vestnik Moscovskogo Universiteta, Khimiya, 25 (1970) 47–49.
  5. G. B. Bokii, A. T. Grigor'ev, E. M. Sokolovskaya, I. G. Sokolova, V. V. Kuprina, L. A. Panteleimonov, M. V. Raevskaya, L. S. Guzei and G. N. Ronami: Metallovedenie, Struktura i Svoistva Stalei i Splavov, Metallidy Novye Metody Issledovaniya, Materialy Simpoziuma po Metallurgii Metallovedeniyu, Moscow, 1968 (1971) 311–315.
  6. A. D. Moraleva, E. M. Sokolovskaya, V. V. Burnashova and V. Ya. Markiv: Moscow Univ. Chem. Bull., Translated from Vestnik Moscovskogo Universiteta, Khimiya, 23 (1968) 40–43.
  7. N. Saunders and A. P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, (Pergamon Materials Series, Elsevier Science Ltd, Oxford, 1998).
  8. H. A. Davies: Phys. Chem. Glasses 17 (1976) 159–173.
  9. J. H. Hildebrand: J. Am. Chem. Soc. 51 (1929) 66–80.
  10. M. Hillert and L.-I. Staffansson: Acta Chem. Scand. 24 (1970) 3618–3626.
  11. O. Redlich and A. T. Kister: Ind. Eng. Chem. 40 (1948) 345–348.
  12. G. Inden: Proc. CALPHAD V, Düsseldorf, 1976, III-(4)-1.
  13. M. Hillert and M. Jarl: CALPHAD 2 (1978) 227–238.
  14. H. A. Davies: Proc. 3rd Int. Conf. on Rapidly Quenched Metals, ed. by B. Cantor, (The Metal Society, London, 1978) pp. 1–21.
  15. D. R. Uhlmann: J. Non-Cryst. Solids 7 (1972) 337–348.
  16. J. W. Christian: The Theory of Phase Transformations in Metals and Alloys, (Pergamon Press., Oxford, 1965) p. 377.
  17. P. Ramachandrarao, B. Cantor and R. W. Cahn: J. Mater. Sci. 12 (1977) 2488–2502.
  18. H. G. Jiang and J. Baram: Mater. Sci. Eng. A208 (1996) 232–238.
  19. W. Zhang and A. Inoue: Mater. Trans. 43 (2002) 2342–2345.
  20. P. G. Zieliński, J. Ostatek, M. Kijek and H. Matyja: Proc. 3rd Int. Conf. on Rapidly Quenched Metals, ed. by B. Cantor, (The Metals Society, London, 1978) pp. 337–343.
  21. K. H. J. Buschow: J. Phys. F 14 (1984) 593–607.
  22. W.-N. Myung, H.-G. Kim and T. Masumoto: Mater. Sci. Eng. A179/A180 (1994) 252–255.
  23. G. Shao: J. Appl. Phys. 88 (2000) 4443–4445.
  24. D. Turnbull: Contemp. Phys. 10 (1969) 473–488.
  25. C. V. Thompson and F. Spaepen: Acta Metall. 31 (1983) 2021–2027.
  26. D. Turnbull: J. Appl. Phys. 21 (1950) 1022–1028.
  27. N. Saunders and A. P. Miodownik: Mater. Sci. Technol. 4 (1988) 768–777.
  28. A. T. Dinsdale: CALPHAD 15 (1991) 317–425.
  29. S. Matsumoto, T. Tokunaga, H. Ohtani and M. Hasebe: Mater. Trans. 46 (2005) 2920–2930.
  30. S. Hao and G. Yang: Proc. the 8th National Symposium on Phase Diagrams Commission on Phase Diagrams of China, (XI'AN Northwest University, 1995) pp. 28–30.
  31. G. Yang and S. Hao: J. Alloy. Compd. 297 (2000) 226–230.
  32. M. E. Kirkpatrick and W. L. Larsen: Trans. ASM 54 (1961) 580–590.
  33. L. Bsenko: J. Less-Common Met. 63 (1979) 171–179.
  34. D. Kramer: Trans. Metall. Soc. AIME 215 (1959) 256–258.
  35. O. Yu. Sidorov, Yu. O. Esin and P. V. Gel'd: Rasplavy 3 (1989) 28–33.
  36. I. Arpshofen, R. Lück, B. Predel and J. F. Smith: J. Phase Equilib. 12 (1991) 141–147.
  37. F. H. M. Spit, J. W. Drijver and S. Radelaar: Scri. Metall. 14 (1980) 1071–1076.
  38. J. C. Gachon and J. Hertz: CALPHAD 7 (1983) 1–12.
  39. M. P. Henaff, C. Colinet, A. Pasturel and K. H. J. Buschow: J. Appl. Phys. 56 (1984) 307–310.
  40. J. F. Smith, Q. Jiang, R. Lück and B. Predel: J. Phase Equilib. 12 (1991) 538–545.
  41. P. Nash and C. S. Jayanth: Phase Diagrams of Binary Nickel Alloys, ed. P. Nash, (ASM International, Materials Park, OH, USA, 1991), Monograph Series on Alloy Phase Diagrams, pp. 390–394.
  42. N. Saunders: CALPHAD 9 (1985) 297–309.
  43. G. Ghosh: J. Mater. Res. 9 (1994) 598–616.
  44. M. Hillert and M. Schalin: J. Phase Equilib. 19 (1998) 206–212.
  45. A. F. Guillermet: Z. Metallk. 82 (1991) 478–487.
  46. K. P. Gupta: J. Phase Equilib. 21 (2000) 485–493.
  47. U. Mizutani, Y. Hoshino and Y. Yamada: Amorufasugoukin-sakusei-no-tebiki, —Ekitaikyurei-ho—, (AGNE Gijutsu Center, Tokyo, 1986) p. 6 (in Japanese).


[JIM HOME] [JOURNAL ARCHIVES]

© 2007 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp