Materials Transactions Online

Materials Transactions, Vol.47 No.03 (2006) pp.889-897
© 2006 The Japan Institute of Metals

Building Ultra-Thin Layers by Ceramic Laser Sintering

Hwa-Hsing Tang

Department of Mechanical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan, R. O. China

The layer thicknesses of rapid prototyping 3D parts must be minimized to reduce the dimensional tolerance and improve the surface roughness. This paper studies the thinnest layer feasible by Ceramic Laser Sintering (CLS) and analyzes the reasons why ultra-thin layers could be built with CLS.
Manufacturing a work piece with a proper scanning parameter (3200 mm/s scanning speed, 33 W laser power) verified a 20-layer square work piece could be made successfully with 0.015 mm layer thickness, which is the thinnest layer made by a powder-based process.
Regarding the feasible layer thickness, effects of the following four significant influential parameters were discussed: (1) powder particle size, (2) paving force carrying capacity of paved layer, (3) upward deformation of the property transformation zone, and (4) anti-fracture strength of the property transformation zone.
The reasons why CLS could build ultra-thin layers were: (1) layers were built with slurry; (2) the inherent solid green support could withstand the paving force and prevent excessive upward deformation; (3) the lowest working temperature was decreased from 1800°C of Ceramic Laser Fusion to 1200°C.

(Received 2005/10/24; Accepted 2006/1/20; Published 2006/3/15)

Keywords: rapid prototyping, ceramic laser sintering, ultra-thin layers, powder-based process

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. Milwaukee Precision Casting Corp.: Technical report, http://www. milwaukeeprec.com, Milwaukee. WI. USA.
  2. H. H. Tang, H. C. Yen, S. M. Su and Z. Y. Lin: Proc. The 15th Solid Freeform Fabrication Symposium, ed. by D. L. Bourell, (The U. of Texas at Austin, Texas, USA, 2004) pp.~268–280.
  3. Shellabear, A. Danzig, M. Heugel, J. Kotila and O. Nyrhilä: SME Member Newsletter Rapid prototyping 9 (2003).
  4. C. K. Chua and K. F. Leong: Rapid Prototyping, (John Wiley & Sons, Inc., Singapore 1997) pp.~29–149.
  5. MCP: The MCP Realizer—Selective Laser Melting, http://www.Mcp-group.com.
  6. H. H. Tang: Method for rapid forming of a ceramic work piece, U.S. Patent no.~6217816, (2001).
  7. H. H. Tang: RP Journal 8 (2002) 284–289.
  8. H. H. Tang and H. C. Yen: Mater. Trans. 45 (2004) 2744–2751.
  9. S. M. Su: Fabricating Ceramic Shell Mold for Precision Casting by Ceramic Laser Fusion, MS Thesis, (NTUT, Taipei, Taiwan, 2004) pp.~77–80.
  10. J. S. Reed: Principles of ceramics processing, (New York, John Wiley & Sons, 1994) pp.~395–397.
  11. S. M. Su: Fabricating Ceramic Shell Mold for Precision Casting by Ceramic Laser Fusion, MS Thesis, (NTUT, Taipei, Taiwan, 2004) pp.~61–66.
  12. Nontraditional Machining Processes, second edition, Ed. by E. J. Weller (SME, Dearborn, MI, USA) pp.~144–145.
  13. M. F. Spotts: Design of Machine elements, (Prentice-Hall, New Jersey, 1985) pp.~382–383.
  14. W. Meiners: Direktes Selektives Laser Sintern einkomponentiger metallischer Werkstoffe, Dissertation, (RWTH Aachen, 1999) pp.~85–86.
  15. H. Wirtz: Selektives Lasersintern von Keramikformschalen für Giessanwendungen, Dissertation, (RWTH Aachen, 2000) pp.~98–100.
  16. W. Meiners: Direktes Selektives Laser Sintern einkomponentiger metallischer Werkstoffe, Dissertation, (RWTH Aachen, 1999) pp.~29–33.
  17. S. H. Haung: The Process improvement and accuracy analysis of Ceramic Laser Fusion, MS Thesis, (NTUT, Taipei, Taiwan, 2002) pp.~73–74.
  18. Keko-equipment: Automatic Tape Casting Machines suitable for Green Ceramic, http://www. Keko-equipment.com, Zuzemberk, Slovenia.


[JIM HOME] [JOURNAL ARCHIVES]

© 2002 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp