Materials Transactions Online

Materials Transactions, Vol.47 No.03 (2006) pp.698-703
© 2006 The Japan Institute of Metals

PM Processing of Single-Phase NiTi Shape Memory Alloys by VPCR Process

Bernard Berthevillerables 31, CH-1950 Sion, Switzerland. Corresponding author, E-mail: bernard.bertheville@nitig.ch}

HEVs, University of Applied Sciences of Western Switzerland, Design & Materials Unit, Route du Rawyl 47, CH-1950 Sion, Switzerland

Single-phase nickel–titanium alloys were successfully synthesized by using a powder metallurgical process based on the use of a calcium reductant source during sintering in argon atmosphere (VPCR process). This process allows avoiding secondary phase formation during the NiTi compound forming reaction. The experimental results show that both heating rate and sintering temperature play a significant role on the final porosity. Different sintering stages at temperatures below TE(Ti2Ni), between TE(Ti2Ni) and TE(Ni3Ti), and above TE(Ni3Ti) were investigated in order to elucidate the influence of the two liquid eutectics on the densification. By choosing a slow heating rate of 0.5 K/min and a long time sintering at 1193 K, an almost dense single-phase NiTi compact was obtained with austenite ≤ftrightarrow martensite transformation heats comparable to those found in melt-cast NiTi alloys.

(Received 2005/9/26; Accepted 2005/12/15; Published 2006/3/15)

Keywords: nickel–titanium, vapor phase calciothermic reduction, powder sintering, calcium, titanium hydride

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. N. Zhang, P. B. Khosrovabadi, J. H. Lindenhovius and B. H. Kolster: Mater. Sci. Eng. A 150 (1992) 263–270.
  2. J. C. Hey and A. P. Jardine: Mater. Sci. Eng. A 188 (1994) 291–300.
  3. Y. Sekiguchi, K. Funami, H. Funakubo and Y. Suzuki: J. de Phys. 43 (1982) 279–285.
  4. D. G. Morris and M. A. Morris: Mater. Sci. Eng. A 110 (1989) 139–149.
  5. M. D. McNeese, D. C. Lagoudas and T. C. Pollock: Mater. Sci. Eng. A 280 (2000) 334–348.
  6. B.-Y. Li, L.-J. Rong, Y. Y.-Li and V. E. Gjunter: Acta Mater. 48 (2000) 3895–3904.
  7. D. C. Lagoudas and E. L. Vandygriff: J. Intell. Mater. System. Struct. 13 (2002) 837–850.
  8. M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H. P. Buchkremer and D. Stöver: Mater. Sci. Eng. A 337 (2002) 254–263.
  9. E. Schüller, O. A. Hamed, M. Bram, D. Sebold, H. P. Buchkremer and D. Stöver: Adv. Eng. Mater. 5 (2003) 918–924.
  10. A. M. Locci, R. Orrù, G. Cao and Z. A. Munir: Intermetallics 11 (2003) 555–571.
  11. T. B. Massalski: Binary phase diagrams (American Society for Metals, Met. Park, 1986).
  12. J. Khalil-Allafi, A. Dlouhy and G. Eggeler: Acta Mater. 50 (2002) 4255–4274.
  13. C. L. Yeh and W. Y. Sung: J. Alloys Compd. 376 (2004) 79–88.
  14. A. Biswas: Acta Mater. 53 (2005) 1415–1425.
  15. B. Bertheville and J.-E. Bidaux: Scr. Mater. 52 (2005) 507–512.
  16. B. Bertheville: J. Alloys Compd. 398 (2005) 94–99.
  17. M. Nishida, C. M. Wayman and T. Honma: Metall. Trans. 17A (1986) 1505–1515.
  18. B. Bertheville, S. Martinerie and J.-E. Bidaux: Proc. Eur. Powder Metall. Conf. EuroPM2003, ed. by European Powder Metallurgy Association (Old Bank Buildings, Shrewsbury, UK) pp.~411–416.
  19. T. W. Duerig, K. N. Melton, D. Stöckel and C. M. Wayman: Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann Ltd., 1990).
  20. E. Schüller, M. Bram, H. P. Buchkremer and D. Stöver: Mater. Sci. Eng. A 374 (2004) 165–169.
  21. B. Bertheville: Biomaterials 27 (2006) 1246–1250.
  22. B.-Y. Li, L.-J. Rong and Y.-Y. Li: Mater. Sci. Eng. A 281 (2000) 169–175.
  23. B.-Y. Li, L.-J. Rong and Y.-Y. Li: Intermetallics 8 (2000) 643–646.
  24. G. Saindrenan, J. Vitart-Barbier and M. Constantinoff: J. Less Common Met. 118 (1986) 227–233.
  25. V. Bhosle, E. G. Baburaj, M. Miranova and K. Salama: Mater. Sci. Eng. A 356 (2003) 190–199.
  26. Y. Kudoh, M. Tokonami, S. Miyazaki and K. Otsuka: Acta Metall. 33 (1985) 2049–2056.
  27. F. Thümmler and R. Oberacker: Introduction to powder metallurgy (The Institute of Materials Series on Powder Metallurgy, London, 1993) pp.~220–230.
  28. R. M. German: Sintering theory and practice, (The Pennsylvania State University, A Wiley-interscience publication, John Wiley & Sons, Inc., 1996) pp.~226–312.
  29. T. Saburi: Shape Memory Materials (Cambridge University Press, eds. K. Otsuka and C. M. Wayman, 1998).
  30. C. L. Chu, C. Y. Chung and P. H. Lin: Mater. Lett. 59 (2005) 404–407.


[JIM HOME] [JOURNAL ARCHIVES]

© 2002 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp