Materials Transactions Online

Materials Transactions, Vol.47 No.03 (2006) pp.639-644
© 2006 The Japan Institute of Metals

Ferromagnetic Shape Memory Microactuators

Manfred Kohl1, Berthold Krevet1, Makoto Ohtsuka2, Daniel Bruggerhl, Germany} and Yong Liu

1Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
2Tohoku University, IMRAM, Sendai 980-8577, Japan

The technologies for fabrication, micromachining and integration of Ni–Mn–Ga thin films are developed in order to create novel microactuators and sensors. These devices simultaneously make use of the electrical, thermoelastic and ferromagnetic properties of the thin films allowing a new level of multifunctionality and, as a consequence, particularly compact designs. By adjusting the Ni-content of the thin films, the martensitic and ferromagnetic transformation temperatures are tuned close to each other above 373 K, which has important consequences on the device performance such as actuation stroke and response time. This article focuses on the mechanisms, fabrication technologies as well as typical performance characteristics of Ni–Mn–Ga microvalves and microscanners. The present state-of-the-art of FSMA microactuators is highlighted.

(Received 2005/9/22; Accepted 2005/11/7; Published 2006/3/15)

Keywords: ferromagnetic shape memory alloys, nickel–manganese–gallium thin films, microactuators, finite element simulation, fabrication technologies

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. For a recent review see, e.g., A. N. Vasil'ev, V. D. Buchel'nikov, T. Takagi, V. V. Khovailo and E. I. Estrin: Physics-Uspekhi 46 (2003) 559–588.
  2. S. J. Murray, M. Marioni, S. M. Allen, R. C. O'Handley and T. A. Lograsso: Appl. Phys. Lett. 77 (2000) 886–888.
  3. A. Sozinov, A. A. Likhachev, N. Lanska and K. Ullakko: Appl. Phys. Lett. 80 (2002) 1746–1749.
  4. T. Kakeshita and K. Ullakko: MRS Bulletin 27 (2002) 105–109.
  5. M. Kohl: Shape memory microactuators, Springer book series on Microtechnology and MEMS, (Springer-Verlag Berlin Heidelberg, 2004).
  6. M. Ohtsuka and K. Itakagi: Int. J. Appl. Electromagn. Mech. 12 (2000) 49–59.
  7. M. Wuttig, C. Craciunescu and J. Li: Mater. Trans., JIM 41 (2000) 933–37.
  8. S. Isokawa, M. Suzuki, M. Ohtsuka, M. Matsumoto and K. Itagaki: Mater. Trans. 42 (2001) 1886–1889.
  9. P. G. Tello, F. J. Castano, R. C. O'Handley, S. M. Allen, M. Esteve, F. Castano, A. Labarta and X. Battle: J. Appl. Phys. 91 (2002) 8234–8236.
  10. H. Rumpf, J. Feydt, D. Levandovski, A. Ludwig, B. Winzek, E. Quandt, P. Zhao and M. Wuttig: SPIE Proc. Series 5053 (2003) 191–199.
  11. J. W. Dong, J. Q. Xie, J. Lu, C. Adelmann, C. J. Palmstrom, J. Cui, Q. Pan, T. W. Shield, R. D. James and S. McKernan: J. Appl. Phys. 95 (2004) 2593–2600.
  12. M. Ohtsuka, M. Sanada, M. Matsumoto and K. Itakagi: Mater. Sci. Eng. A 378 (2004) 377–383.
  13. M. Suzuki, M. Ohtsuka, T. Suzuki, M. Matsumoto and H. Miki: Mater. Trans., JIM 40 (1999) 1174–1177.
  14. M. Kohl, D. Dittmann, E. Quandt and B. Winzek: Sensors and Actuators A 83 (2000) 214–219.
  15. M. Kohl, Y. Liu, B. Krevet, S. Dürr and M. Ohtsuka: J. Phys. IV France 115 (2004) 333–342.
  16. M. Kohl and B. Krevet: Mater. Trans. 43 (2002) 1030–1036.
  17. M. Kohl, D. Brugger, M. Ohtsuka and T. Takagi: Sensors and Actuators 114 (2004) 445–450.
  18. B. Krevet and M. Kohl: Mater. Res. Soc. Symp. Proc. Vol.~881E, (2005) CC4.10.1–6.
  19. B. Krevet, M. Kohl and D. Brugger: Proc. E-MRS 2005, Symposium C, (Warsaw, Poland, 2005), to be published in Int. J. Appl. Electromag. Mech.
  20. M. Matsumoto, T. Takagi, J. Tani, T. Kanomata, N. Muramatsu and A. N. Vasil'ev: Mater. Sci. Eng. A 273–275 (1999) 326–328.
  21. O. Heczko, L. Straka and K. Ullakko: J. Phys. IV France 112 (2003) 959–962.


© 2002 The Japan Institute of Metals
Comments to us :