Materials Transactions Online

Materials Transactions, Vol.47 No.03 (2006) pp.619-624
© 2006 The Japan Institute of Metals

Martensitic Transformation and Microstructure of Sputter-Deposited Ni–Mn–Ga Films

Volodymyr A. Chernenko1, Manfred Kohl2, Victor A. L'vov3, Volodymyr M. Kniazkyi3, Makoto Ohtsuka4 and Oliver Kraft5

1Institute of Magnetism, Vernadsky str. 36-b, Kyiv 03142, Ukraine
2IMT, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany
3Taras Shevchenko University, Radiophysics Dept., Kyiv 03127, Ukraine
4IMRAM, Tohoku University, Sendai 980-8577, Japan
5IMF, Forschungszentrum Karlsruhe, D-76021 Karlsruhe, Germany

The martensitic transformation and microstructure of Ni–Mn–Ga films deposited on an alumina substrate and annealed at 1073 K for 36 ks are studied. Electrical resistivity and calorimetry measurements reveal a non-monotonous thickness dependence of the martensitic start temperature, Tms, at submicron film thickness. Focused Ion Beam (FIB) and standard SEM techniques are used to clarify the film microstructure. A martensitic morphology of films is confirmed by the FIB imaging to be a laminated twin structure aligned almost parallel to the film plane in each crystallite as a consequence of {110}-type crystallographic texture. A thermodynamic model based on the Landau formalism taking into account the substructure of the film and the elastic interaction between film and substrate describes the essential features of the thickness dependence of Tms.

(Received 2005/9/26; Accepted 2005/11/29; Published 2006/3/15)

Keywords: nickel–manganese–gallium thin films, alumina substrate, martensitic transformation temperatures, martensitic morphology, modeling

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. V. A. Chernenko, E. Cesari, V. V. Kokorin and I. N. Vitenko: Scr. Met. et Mat. 33 (1995) 1239–1244.
  2. R. D. James and M. Wuttig: Proc. of the SPIE Symposium on smart materials, V. V. Varadan and J. Chandra Eds. 2715 (1996) 420–426.
  3. M. Kohl, S. Hoffman, Y. Liu, M. Ohtsuka and T. Takagi: J. Phys. IV France 112 (2003) 1185–1188.
  4. J. W. Dong, J. Q. Xie, J. Lu, C. Adelmann, C. J. Palmstr{ø}m, J. Cui, Q. Pan, T. W. Shield, R. D. James and S. McKernan: J. Appl. Phys. 95 (2004) 2593–2600.
  5. J. Dubowik, Y. V. Kudryavtsev and Y. P. Lee: J. Appl. Phys. 95 (2004) 2912–2917.
  6. M. Kohl, V. A. Chernenko, M. Ohtsuka, H. Reuter and T. Takagi: Mater. Res. Soc. Symp. Proc. 855E (2005) W2.8.1.
  7. V. A. Chernenko, M. Ohtsuka, M. Kohl, V. V. Khovailo and T. Takagi: Smart Mater. Struct. 14 (2005) S245–S252.
  8. J. Pons, V. A. Chernenko, R. Santamarta and E. Cesari: Acta Mater. 48 (2000) 3027–3038.
  9. V. A. Chernenko: Scr. Mater. 40 (1999) 523–527.
  10. M. Ohtsuka and K. Itagaki: Int. J. Appl. Electromagn. Mech. 12 (2000) 49–59.
  11. V. A. L'vov and V. A. Chernenko: Eur. Phys. J.: Appl. Phys. 8 (1999) 25–28.
  12. R. G. Barsch and J. A. Krumhansl: Phys. Rev. Lett. 53 (1984) 1069–1076.
  13. V. A. Chernenko and V. A. L'vov: Philos. Mag. 73 (1996) 999–1008.


© 2002 The Japan Institute of Metals
Comments to us :