Materials Transactions Online

Materials Transactions, Vol.47 No.03 (2006) pp.594-598
© 2006 The Japan Institute of Metals

Electronic Structure of B2-Type Ti–Ni–Fe Alloys Exhibiting Second-Order-Like Structural Transformation

Takuya Yamamoto, Takashi Fukuda and Tomoyuki Kakeshita

Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan

We have calculated electronic structure of B2-type Ti–(50-x)Ni–xFe (0≤q x≤q 28) alloys in order to understand the concentration dependence of the phase stability of the B2-type structure in this system. The Fermi surface of each alloy shows a nesting with a sharp peak of generalized susceptibility χ(q) at a nesting vector of q=[ζζ 0]2π/a. The value of ζ at the peak position decreases linearly as the Fe content increases. On the contrary, the peak height of χ(q) does not change monotonically but shows a maximum value for Ti–44Ni–6Fe alloy. This result is consistent with the experimental results obtained by resistivity and specific heat measurements. In addition, we found that although the χ(q) shows a local maximum near 1/3[110]2π/a in Ti–44Ni–6Fe alloy, it shows a saddle point near 1/3[110]2π/a in TiNi.

(Received 2005/10/11; Accepted 2005/12/15; Published 2006/3/15)

Keywords: precursor phenomena, phonon softening, diffuse scattering, band calculation

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. S. K. Satija, S. M. Shapiro, M. B. Salamon and C. M. Wayman: Phys. Rev. B 29 (1984) 6031.
  2. P. Moine, J. Allain and B. Renker: J. Phys. F: Met. Phys. 14 (1984) 2517.
  3. T. Ohba, T. Fukuda, T. Tabata and T. Kakeshita: J. Phys. IV France 112 (2003) 639.
  4. D. Shindo and Y. Murakami: Sci. Tech. Adv. Mat. 1 (2000) 117.
  5. I. M. Robertson and C. M. Wayman: Philos. Mag. A 48 (1983) 421.
  6. R. Oshima, M. Sugiyama and F. E. Fujita: Metall. Trans. A 19A (1988) 803.
  7. Y. Noda, S. M. Shapiro, G. Shirane, Y. Yamada and L. E. Tanner: Phys. Rev. B 42 (1990) 10397.
  8. S. M. Shapiro, Y. Noda, Y. Fujii and Y. Yamada: Phys. Rev. B 30 (1984) 4314.
  9. T. Ohba, Y. Emura and K. Otsuka: Mater. Trans., JIM 33 (1992) 29.
  10. T. Ohba, N. Miyamoto, K. Fukuda, T. Fukuda, T. Kakeshita and K. Kato: Smart Mater. Struct. 14 (2005) S197.
  11. G.-L. Zhao and B. N. Harmon: Phys. Rev. B 45 (1992) 2818.
  12. O. I. Velikokhatnyi and I. I. Naumov: Phys. Solid State 41 (1999) 617.
  13. Y. Lee, J. Y. Rhee and B. N. Harmon: Phys. Rev. B 66 (2002) 054424.
  14. G.-L. Zhao, T. C. Leung, B. N. Harmon, M. Keil, M. Müllner and W. Weber: Phys. Rev. B 40 (1989) 7999.
  15. J. M. Zhang and G. Y. Guo: J. Phys.: Condens. Matter 7 (1995) 6001.
  16. H. Krakauer, M. Posternak and A. J. Freeman: Phys. Rev. B 19 (1979) 1706.
  17. J. P. Perdew, S. Burke and M. Ernzerhof: Phys. Rev. Lett. 77 (1996) 3865.
  18. J. Rath and A. J. Freeman: Phys. Rev. B 11 (1975) 2109.
  19. G. Bihlmayer, R. Eibler and A. Neckel: Ber. Bunsenges. Phys. Chem. 96 (1992) 1626.
  20. M.-S. Choi, T. Fukuda, T. Kakeshita and H. Mori: Philos. Mag. 86 (2006) 67.
  21. M.-S. Choi, T. Fukuda and T. Kakeshita: Scr. Mater. 53 (2005) 869.


© 2002 The Japan Institute of Metals
Comments to us :