Materials Transactions Online

Materials Transactions, Vol.47 No.03 (2006) pp.580-583
© 2006 The Japan Institute of Metals

Development of Prestressed Concrete Using Fe–Mn–Si-Based Shape Memory Alloys Containing NbC

Takahiro Sawaguchi1, Takehiko Kikuchi1, Kazuyuki Ogawa1, Setsuo Kajiwara1, Yosaku Ikeo2, Masarou Kojima2 and Takatoshi Ogawa2

1National Institute for Materials Science, Tsukuba 305-0047, Japan
2Takenaka Corporation, Chiba 270-1395, Japan

This article reports the mechanical properties of concrete prestressed by the Fe–Mn–Si-based shape memory alloys containing NbC that exhibit an excellent shape memory effect without the so-called `training' treatment. A thermomechanically treated Fe–28Mn–6Si–5Cr–0.53Nb–0.06C (mass%) alloy was used for this purpose. Four square bars of the alloy were embedded in mortar, and heated above their reverse martensitic transformation start temperature after hardening of the mortar matrix. Three-point bending tests were performed for the mechanical property characterization. It was found that prestressing by the shape memory alloys increased the bending strength and cracking stress of the mortar.

(Received 2005/10/11; Accepted 2005/11/7; Published 2006/3/15)

Keywords: prestressed concrete, shape memory alloy, iron–manganese–silicon-based alloy, niobium carbide, cracking stress, smart composite

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. The Japan concrete institution Eds. The Handbook of concrete (in Japanese), (GI-HO-DO, Tokyo, 1976), pp.~654–984.
  2. A. K. Maji and I. Negret: J. Eng. Mech-ASCE 124 (1998) 1121–1128.
  3. F. Auricchio and L. Petrini: Int. J. Num. Meth. Eeng. 61 (2004) 716–737.
  4. J. P. Briggs and P. P. Castaneda: J. Appl. Mech.-Trans. ASME 69 (2002) 470–480.
  5. S. El-Tawil and J. Ortega-Rosales: ACI Struct. J. 101 (2004) 846–851.
  6. Y. Watanabe, E. Miyazaki and H. Okada: Mater. Trans. 43 (2002) 974–983.
  7. O. Soderberg, P. G. Yakovenko, K. Ullakko, V. G. Gavriljuk and V. K. Lindroos: Mater. Sci. Forum 318-3 (1999) 763–768.
  8. P. Soroushian, K. Ostowari, A. Nossoni and H. Chowdhury: Trans. Res. Rec. 2001 (2001) 20–26.
  9. A. Sato, E. Chishima, K. Soma and T. Mori: Acta Metall. 30 (1982) 1177–1183.
  10. H. Otsuka, M. Murakami and S. Matsuda: MRS Int. Mtg. Adv. Mater., vol.~9, Tokyo, 1989, 451–456.
  11. H. Otsuka, H. Yamada, T. Maruyama, H. Tanahashi, S. Matsuda and M. Murakami: ISIJ Int. 30 (1990) 674–679.
  12. S. Kajiwara, D. Liu, T. Kikuchi and N. Shinya: Scr. Mater. 44 (2001) 2809–2814.
  13. S. Kajiwara, D. Z. Liu, T. Kikuchi and N. Shinya: J. Phys. IV 11 (2001) 199–204.
  14. A. Baruj, T. Kikuchi and S. Kajiwara: Mater. Sci. Eng. A 378 (2004) 337–342.
  15. A. Baruj, T. Kikuchi, S. Kajiwara and N. Shinya: Mater. Sci. Forum 394-3 (2002) 403–406.
  16. A. Baruj, T. Kikuchi, S. Kajiwara and N. Shinya: Mater. Trans. 43 (2002) 585–588.
  17. A. Baruj, T. Kikuchi, S. Kajiwara and N. Shinya: J. Phys. IV 112 (2003) 373–376.
  18. A. Baruj, T. Kikuchi, S. Kajiwara and N. Shinya: Mater. Sci. Eng. A 378 (2004) 333–336.
  19. The cementitious materials containing coarse aggregates larger than 5 mm are called `concrete', while those containing aggregates less than 5 mm are called `mortar'.


© 2002 The Japan Institute of Metals
Comments to us :