Materials Transactions Online

Materials Transactions, Vol.47 No.03 (2006) pp.564-570
© 2006 The Japan Institute of Metals

Elastic Energy Analysis of Carbide and Nitride-Type Precipitates in an Fe–Mn–Si–Cr Shape Memory Alloy

Susan Farjami1 and Hiroshi Kubo2

1Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
2Kanto Polytechnic University, 612-1 Mitake Yokokura, Oyama 323-0810, Japan

The application of the microscopic theory of elasticity in a discrete lattice model is made on the transitional metal carbide and nitride precipitates formed in the Fe–Mn–Si–Cr shape memory alloy in conjunction with the improvement of shape memory effect (strain) and the improvement of strength. Two distinguishable methods of analysis have been established using the microscopic theory of elasticity in a discrete lattice model: One is the establishment of the description of precipitate and misfit dislocations in Fourier space. The second is the rigorous estimation of interaction energies among precipitate and misfit dislocations. The results could successfully describe the shape of the precipitate observed in the experimental investigation. It was also concluded that the elastic strain energy increases with the lattice parameter of the precipitate. Among the transition carbides and nitrides under investigations, VN, which revealed the minimum value of the elastic energy, is manifested to be the most favored one for the precipitation enhanced Fe–Mn–Si–Cr shape memory alloy. Homogeneously precipitated VN containing materials could show large deformability, higher strength by precipitation hardening and the higher shape recovery strain due to the nucleation sites of the precipitates in its reverse phase transformation.

(Received 2005/9/27; Accepted 2005/11/7; Published 2006/3/15)

Keywords: shape memory alloy (SMA), precipitate, elastic energy, microscopic theory of elasticity

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. A. Sato, E. Chishima, K. Soma and T. Mori: Acta Metall. 30 (1982) 1177–1183.
  2. A. Sato, E. Chishima, Y. Yamaji and T. Mori: Acta Metall. 32 (1984) 539–547.
  3. H. Otsuka, M. Murakami and S. Matsuda: Proc. MRS Int. Meetings on Advanced Materials, ed. by M. Doyama et al., Shape Memory Materials, MRS 9 (1989) p.~451.
  4. K. Ogawa and S. Kajiwara: Mater. Trans., JIM 34 (1993) 1169–1176.
  5. L. Jian and C. M. Wayman: Mater. Characterization 32 (1994) 215–226.
  6. K. Tsuzaki, Y. Natsume, Y. Tomota and T. Maki: Scr. Metall. Mater. 33 (1995) 1087–1092.
  7. A. Baruj, T. Kikuchi, S. Kajiwara and N. Shinya: Mater. Trans., JIM. 43 (2002) 585–588.
  8. S. Kajiwara, D. Liu, T. Kikuchi and N. Shinya: Scr. Mater. 44 (2001) 2809–2814.
  9. A. Ariapour, I. Yakubtsov and D. D. Perovic: Metall. Mater. Trans. A 32 (2001) 1621–1628.
  10. H. Kubo, K. Nakamura, S. Farjami and T. Maruyama: Mater. Sci. Eng. A 378 (2004) 343–348.
  11. N. Yoneyama, T. Setoda, S. Kumai, A. Sato, M. Komatsu and M. Kiritani: Mater. Sci. Eng. A 350 (2003) 125–132.
  12. H. Otsuka, H. Yamada, T. Maruyama, H. Tanahashi, S. Matsuda and M. Murakami: ISIJ Int. 30 (1990) 674–679.
  13. Y. Yazawa, T. Furuhara and T. Maki: Acta Mater. 52 (2004) 3727–3736.
  14. S. Farjami, K. Hiraga and H. Kubo: Mater. Trans. 45 (2004) 930–935.
  15. S. Farjami, K. Hiraga and H. Kubo: Acta Mater. 53 (2005) 419–431.
  16. A. G. Khachaturyan: Theory of Structural Transformation in Solids, (Wiley, New York, 1983), p.~293.
  17. J. D. Eshelby: Progress in Solid Mechanics, vol.~II, ed. by I. N. Sneddon and R. Hill, (North Holland, Amsterdam, 1961), p.~87.
  18. T. Mura: Micromechanics of Defects in Solids, 2nd rev. ed., (Martinus Nijhoff Pub., Dordrecht, 1987), p.~74.
  19. H. E. Cook and D. de Fontaine: Acta Matall. 17 (1969) 915–924.
  20. H. E. Cook and D. de Fontaine: Acta Matall. 19 (1971) 607–616.
  21. A. G. Khachaturyan, S. Semenovskaya and J. M. Morris: Acta Metall. 36 (1988) 1563–1572.
  22. Y. Wang and A. G. Khachaturyan: Acta Metall. Mater. 43 (1995) 1837–1857.
  23. T. Mura, T. Mori and M. Kato: J. Mech. Phys. Solids 24 (1976) 305–318.
  24. T. Mori, P. C. Cheng, M. Kato and T. Mura: Acta Metall. 26 (1978) 1435–1441.
  25. J. K. Lee and W. C. Johnson: Acta Metall. 26 (1978) 541–545.
  26. S. Onaka, T. Fujii and M. Kato: Mech. Mater. 20 (1995) 329–336.
  27. M. Kato, T. Fujii and S. Onaka: Mater. Sci. Eng. A 211 (1996) 95–103.
  28. S. Onaka, N. Kobayashi, T. Fujii and M. Kato: Mater. Sci. Eng. A 347 (2003) 42–49.
  29. S. Onaka, T. Fujii and M. Kato: Mech. Mater. 37 (2005) 179–187.
  30. H. E. Cook: Acta Metall. 23 (1975) 1027–1039.
  31. W. B. Pearson: A handbook of lattice spacings and structures of metals and alloys, (Pergamon, London, 1967).
  32. J. Zarestky and C. Stassis: Phys. Rev. B 35 (1986) 4500–4502.
  33. F. G. Wei, T. Hara and K. Tsuzaki: Philos. Mag. 84 (2004) 1735–1751.
  34. Z. G. Yang and M. Enomoto: Metall. Mater. Trans. A 32 (2001) 267–274.


[JIM HOME] [JOURNAL ARCHIVES]

© 2002 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp