Materials Transactions Online

Materials Transactions, Vol.47 No.03 (2006) pp.523-526
© 2006 The Japan Institute of Metals

Near Net-Shape Fabrication of Superelastic NiTi Devices by Sputtering and Photoetching

Holger Rumpf, Volker Wipperfürth, Christiane Zamponi and Eckhard Quandt

Center of Advanced European Studies and Research (caesar), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany

NiTi-films were fabricated by DC magnetron sputtering from cast-melted disc targets. The obtained freestanding films revealed superelastic properties in tensile testing experiments. At 37°C superelastic properties were achieved showing a closed-loop hysteresis and a plateau of more than 5% strain. Photolithography and wet etching technology were applied in order to fabricate net-shaped devices. Achievable structure sizes range in the order of the NiTi film thickness, i.e. typically between 5 and 15 μm. Tensile testing experiments reveal a remarkable strain tolerance of these devices which summed up to a superelastic strain of up to 5%. It has been demonstrated that the deposition process can be transferred to the fabrication of NiTi tubes, which have high potential for application as vascular implants, e.g. stents.

(Received 2005/9/13; Accepted 2005/11/7; Published 2006/3/15)

Keywords: superelasticity, TiNi, sputtering, thin films, structuring, net-shaped structure

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. T. W. Duerig, A. R. Pelton and D. Stöckel: Mater. Sci. Eng. A 273–275 (1999) 149–160.
  2. D. Mantovani: Jom-Journal of the Minerals Metals & Materials Society 52 (2000) 36–44.
  3. K. Otsuka and X. Ren: Intermetallics 7 (1999) 511–528.
  4. T. Saburi: Shape Memory Materials, ed. by K. Otsuka and C. M. Wayman (Cambridge University Press, United Kingdom, 1998) pp.~49–96.
  5. J. D. Busch, A. D. Johnson, C. H. Lee and D. A. Stevenson: J. Appl. Phys. 68 (1990) 6224–6228.
  6. S. Miyazaki and A. Ishida: Mater. Sci. Eng. A 273–275 (1999) 106–133.
  7. V. Gupta, V. Martynov and A. D. Johnson: Actuator 2002 (2002) 355–358.
  8. M. Kohl, D. Dittmann, E. Quandt, B. Winzek, S. Miyazaki and D. M. Allen: Mater. Sci. Eng. A 275 (1999) 784–788.
  9. B. Winzek and E. Quandt: Z. Metallkd. 90 (1999) 796–802.
  10. H. Rumpf, B. Winzek, C. Zamponi, W. Siegert, K. Neuking and E. Quandt: Mater. Sci. Eng. A 378 (2004) 429–433.
  11. H. Rumpf, C. Zamponi, C. Bourauel, D. Drescher and E. Quandt: Mater. Res. Soc. Symp. Proc. 855E (2004) W1.5.1–1.5.6.
  12. H. Rumpf, T. Walther, C. Zamponi and E. Quandt: Mater. Sci. Eng. A 415 (2006) 304–308.
  13. C. Zamponi, H. Rumpf, B. Wehner, J. Frenzel and E. Quandt: Materialwiss. Werkst. 35 (2004) 359–364.
  14. A. Ishida, M. Sato, A. Takei, K. Nomura and S. Miyazaki: Metall. Mater. Trans. A 27 (1996) 3753–3759.


© 2002 The Japan Institute of Metals
Comments to us :