Materials Transactions Online

Materials Transactions, Vol.44 No.6 (2003) pp.1190-1197
© 2003 The Japan Institute of Metals

Marking Oxide Films on the Section of Al-XSi Alloys by Ultrasonic-vibration Treatment

Yeong-Jern Chen1, Li-Wu Huang2,*, Teng-Shih Shih2,**

1Department of Mechanical Engineering, De-Lin Institute of Technology, Tu-Cheng, Taiwan 236, R.O.China
2Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan 32054, R.O.China

Oxide films entrapped in Al-XSi alloys with an X from 0% to 13% are different, and can be identified by the presented ultrasonic-vibration treatment. After polishing and ultrasonic-vibration treatment, the surfaces of samples or castings then show differently shaped foggy marks, including lumps, flakes, strips or spots. Oxide films fracture and particles become detached from the film during ultrasonic-vibration treatment. The polished surface thus becomes partly eroded after treatment, and these eroded areas are visibly as differently shaped foggy marks. This paper presents a sequential summary of the formation of these eroded areas, foggy marks, in samples of pure aluminum and Al-XSi alloys during ultrasonic-vibration treatment.

(Received February 17, 2003; Accepted April 24, 2003)

Keywords: ultrasonic, cavitation, micro-jet, shock waves, oxide film, aluminum

*Graduate student, National Central University.
**Corresponding author. E-mail:

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. E. A. Neppiras: Ultrasonics 22 (1984) 25-28.
  2. K. S. Suslick: Sci. Am. 80 (1989) 80-86.
  3. L. A. Crum: Appl. Sci. Res. 38 (1982) 101-105.
  4. E. Apfel: Ultrasonics 22 (1984) 167-173.
  5. E. Apfel: J. Acoust. Soc. Am. 48 (1970) 1179-1186.
  6. Y. Tomita and A. Shima: J. Fluid Mech. 169 (1986) 35-564.
  7. K. S. Suslick, S. J. Doktycz and E. B. Flint: Ultrasonics 28 (1990) 280-290.
  8. R. John, R. Blake, G. S. Keen and R. P. Tong: Phil. Trans. R. Soc. Lond. A357 (1999) 251-267.
  9. U. Parlitz, R. Mettin, S. Luther, I. Akhatov, M. Voss and W. Lauterborn: Phil. Trans. R. Soc. Lond. A57 (1999) 313-334.
  10. L. A. Crum: Ultrason. Sonochem. 2 (1995) 147-152.
  11. C. Nyahumwa, N. R. Green and J. Campbell: AFS Trans. 106 (1998) 215-224.
  12. J. Krautkrämer and H. Krautkrämer: Ultrasonic Testing, (Springer verlag, New York, 1990) p. 13.
  13. A. S. Birks and R. E. Green: Nondestructive Testing Handbook, Ultrasonic Testing, (American Society of Nondestructive, 1991) pp. 838-841.
  14. Y. J. Chen, L. W. Huang and T. S. Teng: Mater. Trans. 44 (2003) 327-335[JIM].
  15. B. Winkler and M. Hytha: Z. Kristallogr. 216 (2001) 67-70.
  16. Y. J. Chen, and T. S. Teng: J. CSME 23 (2002) 55-67.
  17. S. Qin, C. Chen, G. Zhang, W. Wang and Z. Wang: Mater. Sci. Eng. A272 (1999) 363-370.
  18. M. A. Meyers and K. K. Chawla: Mechanical Metallurgy, (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1984) pp. 502-506.
  19. R. H. Bryden, D. G. Goski and W. F. Caley: J. Eur Ceram. Soc. 19 (1999) 1599-1604.
  20. D. M. Stefanescu: Metals Handbook, Casting, (American Society for Metals, Metals Park, Ohio, 1988) p. 852.
  21. J. F. Shackelford, W. Alexander and J. S. Park: CRC materials science and engineering handbook, (Boca Raton FL, 1994) pp. 421.
  22. F. P. Ber and E. R. Johnston, Jr: Mechanics of Materials, (McGraw-Hill International Book Company, New York, 1981) pp. 331-342.


© 2002 The Japan Institute of Metals
Comments to us :