Materials Transactions Online

Materials Transactions, Vol.44 No.6 (2003) pp.1133-1137
© 2003 The Japan Institute of Metals

Control of Crystal Orientation of Hydroxyapatite by Imposition of a High Magnetic Field

Koji Inoue*, Kensuke Sassa1, Yoshiyuki Yokogawa2, Yoshio Sakka3, Masazumi Okido1 and Shigeo Asai1

1Department of Materials Processing Engineering, Graduate School of Nagoya University, Nagoya 464-8603, Japan
2National Institute of Advanced Industrial Science and Technology, Nagoya 463-8565, Japan
3National Institute for Materials Science, Tukuba 305-0047, Japan

A hydroxyapatite is most suitable biomaterial for clinical application, because it is a main component which constitutes bones and teeth of an organism. Since the hydroxyapatite has different biocompatibility and absorptive activity of proteins for its crystal plane, it is necessary to use the appropriate crystal plane for use in vivo. Thus, the crystal orientation of the hydroxyapatite is one of the very crucial subjects in biomaterials processing. In this study, the control of crystal orientation of the hydroxyapatite has been conducted in the colloidal filtration (slip casting) process under a high magnetic field and a new process where the high magnetic field is introduced in the heat substrate method developed by Okido et al. The usefulness of the processes has been confirmed through the orientation index evaluated by X-ray diffraction patterns and scanning electron microscope (SEM) images of hydroxyapatite crystals. The crystal axis of hydroxyapatite aligned by a magnetic field was determined.

(Received December 5, 2002; Accepted April 10, 2003)

Keywords: bioceramics, crystal orientation, crystalline orientation, electromagnetic processing of materials, high magnetic field, hydroxyapatite

*Graduate Student, Nagoya University. Present address: Toyota Industries Co., Kariya 448-8671, Japan.

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. T. Sata: Fine Ceramics Engineering, (Asakura Syoten, 1990) 256.
  2. S. Sakka: Ceramics Japan 24 (1989) 601-607.
  3. N. Sasaki and Y. Sudoh: Calcif Tissue Int. (1997) 60, 361-367.
  4. T. Nakano, K. Kaibara, Y. Tabata, N. Nagata, S. Enomoto, E. Marukawa and Y. Umakoshi: Bone 31 (2002) 4, 479-487.
  5. H. Aoki: Surf. Sci. 10 (1989) 96-101.
  6. T. Kawasaki, M. Niimura and Y. Kobayashi: J. Chromatography 515 (1990) 125-148.
  7. T. Akazawa and M. Kobayashi: Phosphorus letter. 36 (1996) 601-607.
  8. W. Tong, J. Chen, X. Li, J. Feng, Y, Cao, Z. Yang and X. Zhang: J. Mater. Sci. 31 (1996) 3739-3742.
  9. C. M. Roome and C. D. Adam: Biomaterials 16 (1995) 691-696.
  10. Y. Osada: Biomimetics Handbook, (NTS, 2001) 62.
  11. M. Kikuchi, S, Itoh, S. Ichinose, K. Shinomiya and J. Tanaka: Biomaterials 22 (2001) 1705-1711.
  12. H. Morikawa, K. Sassa and S. Asai: Mater. Trans. JIM 39 (1998) 814-818[JIM].
  13. T. Taniguti, K. Sassa and S. Asai: Mater. Trans. JIM 41 (2000) 981-984[JIM].
  14. M. Tahashi, K. Sassa and S. Asai: Mater. Trans. JIM 41 (2000) 985-990[JIM].
  15. M. Tahashi, M. Ishihara, K. Sassa and S. Asai: Trans. Mater. Res. Soc. Jap. 27 (2002) 31-34.
  16. T. S. Suzuki and Y. Sakka: Jpn. J. Appl. Phys. 41 (2002) L1272-1274[IPAP].
  17. Y. Sakka, T. S. Suzuki, N. Tanabe, S. Asai and K. Kitazawa: Jpn. J. Appl. Phys. 41 (2002) L1416-1418[IPAP].
  18. K. Kuroda, R. Ichino, M. Okido and O. Takai: Journal of Biomedicals Research 59 (2002) 390-397.
  19. M. Okido, R. Ichino, K. Kuroda, R. Ohsawa and O. Takai: Mat. Res. Soc. Symp. Proc. 599 (2000) 153-157.
  20. K. S. Willson and J. A. Rogers: Technical Proceedings of American Electroplaters Society 51 (1964) 92-95.


© 2002 The Japan Institute of Metals
Comments to us :