Materials Transactions Online

Materials Transactions, Vol.44 No.6 (2003) pp.1116-1119
© 2003 The Mining and Materials Processing Institute of Japan

Vapor Pressure Measurements for the FeCl2-ZnCl2 System by the Transpiration Method

Sang Han Son1,* and Fumitaka Tsukihashi2

1Department of Materials Science and Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
2Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, Kashiwa 277-8561, Japan

The vapor pressures of FeCl2 and ZnCl2 in the FeCl2-ZnCl2 system were measured by the transpiration method at 873 K and 917 K. The vapor pressure data were interpreted to indicate the formation of complex ions in the FeCl2-ZnCl2 melts. It is presumed that the complex molecule FeZnCl4 as well as FeCl2 and ZnCl2 exists in the vapors in equilibrium with molten FeCl2-ZnCl2 mixtures. The activities in the FeCl2-ZnCl2 system show a negative deviation from Raoult's law. These results suggest that the complex ions such as ZnCl42- are formed in molten FeCl2-ZnCl2 mixtures.

(Received November 18, 2002; Accepted March 12, 2003)

Keywords: thermodynamics, vapor pressure, dust, fly ash, transpiration method, iron chloride-zinc chloride system


*Graduate Student, The University of Tokyo.

PDF(Free)PDF (Free) Table of ContentsTable of Contents

REFERENCES

  1. T. Yamamoto, K. Isaka, H. Sato, Y. Matsukura and H. Ishida: ISIJ Int. 40 (2000) 260-265.
  2. R. Deike and C. Hillmann: Scand. J. Metall. 28 (1999) 86-91.
  3. F. C. Sahin, B. Derin and O. Yucel: Scand. J. Metall. 29 (2000) 224-230.
  4. Y. Hara, N. Ishiwata, H. Itaya and T. Matsumoto: ISIJ Int. 40 (2000) 231-237.
  5. D. J. Fray: Trans. Ins. Min. Metall. Sect. C 95 (1986) C55-C57.
  6. J. K. S. Tee and D. J. Fray: JOM 51 (1999) 24-27.
  7. F. Tailoka and D. J. Fray: Trans. Ins. Min. Metall. Sect. C 106 (1997) C115-C122.
  8. M. Hirasawa: Proc. 2nd Int. Conf. on Processing Materials for Properties, ed. by B. Mishra and C. Yamauchi, (The Minerals, Metal & Materials Society, 2000) pp. 717-722.
  9. O. Knacke, O. Kubaschewski and K. Heseelmann: Thermochemical Properties of Inorganic Substance, (Springer-Verlag, 1991) pp. 673-675, 2340-2341.
  10. H. Bloom and J. W. Hastie: J. Phys. Chem. 72 (1968) 2361-2365.
  11. H. Bloom and J. W. Hastie: J. Phys. Chem. 72 (1968) 2706-2710.
  12. D. S. Mcphail, M. G. Hocking and J. H. E. Jeffes: J. Mater. Sci. 20 (1985) 449-456.
  13. J. W. Hastie: Advanced in Molten Salt Chemistry, ed. J. Braunstein, G. Mamantov and G. P. Smith, (New York, NY: Plenum press, 1971) pp. 225-257.
  14. A. Ferrari and A. Inganni: Atti Accad. Naz. Lincei, Rend., Classe Sci. Fis. Mat. Nat. 12 (1930) 672.
  15. D. E. Irish and T. F. Yong: J. Chem. Phys. 43 (1965) 1765-1768.
  16. J. R. Moyer, J. C. Evans and G. Y.-S. Lo: J. Electrochem. Soc. 113 (1966) 158-161.
  17. R. B. Ellis: J. Electrochem. Soc. 113 (1966) 485-490.


[JIM HOME] [JOURNAL ARCHIVES]

© 2002 The Japan Institute of Metals
Comments to us : editjt@jim.or.jp