Materials Transactions Online

Materials Transactions, Vol.43 No.3 (2002) pp.428-431
© 2002 The Japan Institute of Metals

Ternary Compound Ti3SiC2: Part I. Pulse Discharge Sintering Synthesis*

ZhengMing Sun, ZheFeng Zhang**, Hitoshi Hashimoto and Toshihiko Abe

National Institute of Advanced Industrial Science and Technology (AIST Tohoku), Sendai 983-8551, Japan

Pulse discharge sintering (PDS) technique was employed to synthesize the ternary compound Ti3SiC2 from four starting powder mixtures. The experimental results demonstrated that when the starting material of 3Ti/Si/2C or 3Ti/SiC/C was used high content of the secondary phase, TiC, higher than 30 mass%, was found in the sintered material. When TiC powder as starting material was used (Ti/Si/2TiC) in the same stoichiometric composition, however, the final sintered product contained low TiC content of a few percent. Further adjusting the composition to the off-stoichiometric of 2Ti/2Si/3TiC, the content of the secondary phase TiC was further controlled to be around 1 mass%. In the materials sintered from Ti/Si/2TiC and 2Ti/2Si/3TiC an optimum sintering temperature exists at 1573 K, at which the highest Ti3SiC2 phase purity was achieved. When sintered at the optimum temperature a density of higher than 99% was obtained. At the optimum sintering temperature, both the phase purity and the density of the material sintered from 2Ti/2Si/3TiC showed very little dependence on the sintering time ranging from a few minutes to four hours, indicating the phase stability at this temperature.

(Received October 22, 2001; Accepted December 19, 2001)

Keywords: titanium silicon carbide, synthesis, pulse discharge sintering, stoichiometric composition, secondary phase, density

*This Paper was Presented at the Autumn Meeting of the Japan Institute of Metals, held in Fukuoka, on September 22
nd, 2001.
**JSPS postdoctoral fellow.

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. W. Jeitschko and H. Nowotny: Monath. Chem. 98 (1967) 329-337.
  2. J. J. Nickl, K. K. Schweitzer and P. Luxenberg: J. Less Com. Met. 26 (1972) 335-353.
  3. T. Goto and T. Hirai: Mater. Res. Bull. 22 (1987) 1195-1201.
  4. M. Barsoum: Prog. Solid St. Chem. 28 (2000) 201-281.
  5. S. Arunajatesan and A. H. Carim: J. Am. Ceram. Soc. 78 (1995) 667-672.
  6. J. Lis, Y. Miyamoto, R. Pampuch and K. Tanihata: Mater. Lett. 22 (1995) 163-168.
  7. J. F. Li, F. Sato and R. Watanabe: J. Mater. Sci. Lett. 18 (1999) 1595-1597.
  8. M. W. Barsoum and T. El-Raghy: J. Am. Ceram. Soc. 79 (1996) 1953-1956.
  9. T. El-Raghy and M. W. Barsoum: J. Am. Ceram. Soc. 82 (1999) 2849-2854.
  10. Y. C. Zhou and Z. M. Sun: Scr. Mater. 41 (1999) 61-66.
  11. J. T. Li and Y. Miyamoto: J. Mater. Synth. Proc. 7 (1999) 91-96.
  12. J.-F. Li, W. Pan, F. Sato and R. Watanabe: Acta Mater. 49 (2001) 937-945.
  13. Z. F. Zhang, Z. M. Sun, H. Hashimoto and T. Abe: Submitted to J. Am. Ceram. Soc. 2001.
  14. Z. F. Zhang, Z. M. Sun, H. Hashimoto and T. Abe: Submitted to Mater. Res. Bull. 2001.
  15. Z. F. Zhang, Z. M. Sun, H. Hashimoto and T. Abe: Scr. Mater. 45 (2001) 1461-1467.
  16. Z. F. Zhang, Z. M. Sun, H. Hashimoto and T. Abe: Mater. Res. Innov. in press.
  17. Z. F. Zhang, Z. M. Sun, H. Hashimoto and T. Abe: Submitted to Acta Mater. 2001.
  18. L. Kaufman: Calphad 3 (1979) 45-76.


© 2002 The Japan Institute of Metals
Comments to us :