Materials Transactions Online

Transactions of the Japan Institute of Metals, Vol. 28 No. 8 (1987) pp.644-654
© 1987 The Japan Institute of Metals

Transient Creep Mechanism in Pure Aluminum at High-Temperature*

Hideharu Nakashima** and Hideo Yoshinaga**

In order to clarify the deformation mechanism in the transient creep region, the instantaneous plastic strain and the strain rate have been measured by using pure aluminum from a very early stage of transient creep to the steady state. The creep test has been carried out at temperatures from 623 to 823 K under stresses from 0.81 to 6.7 MPa.
It is found that the instantaneous plastic strain does not depend on temperature; it depends exclusively on stress. At a very early stage of transient creep, the Zener-Hollomon parameter, Z, depends strongly on temperature in the lower temperature region (623-723 K), but it is independent of temperature in the higher temperature region (773-823 K). At a later stage, the Z vs strain curves at lower temperatures converge to a single one, which is the same as that in the higher temperature region, and finally comes into the steady-state.
From the temperature-independence, it is concluded that the main part of the instantaneous plastic strain is produced by the athermal motion of dislocations. From the theoretical analysis based on a dislocation-network model, it is inferred that the creep mechanism in the lower temperature region changes from a process, in which the thermally activated glide of some long dislocation links takes part, to the well-known recovery process at an early stage of transient creep.

(Received February 23, 1987)

Keywords: transient creep mechanism, aluminum, high-temperature deformation, instantaneous strain, Zener-Hollomon parameter, recovery, self-diffusion

* This paper was originally published in Japanese in J. Japan Inst. Metals, 50 (1986), 616.

** Department of Materials Science and Technology, Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816, Japan.

PDF(Free)PDF (Free) Table of ContentsTable of Contents
© 1987 The Japan Institute of Metals