Structural and Optical Characteristics of BaTiO$_3$:Yb$^{3+}$ Powders

A. García Murillo1,*, F. J. Carrillo Romo1, M. García Hernández2, O. Barbosa García3, A. Meneses Nava3, S. Palomares Sánchez4 and A. Flores Vela1

1Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada (CICATA) IPN Altamira Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600 Altamira, Tamaulipas, México
2Alumna del postgrado en Tecnología Avanzada del CICATA IPN Altamira IPN, Km. 14.5 Carretera Tampico-Puerto Industrial, Altamira, Tamaulipas 89600, México
3Centro de Investigaciones en Óptica A. C. Loma del Bosque # 115 Col. Lomas del Campetere C.P. 37150, León Gto., México
4Facultad de Ciencias, UASLP Av. Dr. Salvador Nava Martínez, s/n Zona Universitaria. C.P. 78290 San Luis Potosí, S. L. P., México

Yb$^{3+}$ doped Barium Titaneate powders were prepared by the sol-gel method in order to study their structural and luminescent properties. These powders have potential to be used to prepare films for luminescent screens. The synthesized powders were obtained at 2, 4 and 8% mol Yb$^{3+}$ doped BaTiO$_3$. In order to determine organic compound decomposition, weight loss, and establish the crystallization process, we performed TGA and DTA analyses. The powders were also thermally treated at temperatures ranging from 700 to 1200°C in order to study the structure evolution. Pure doped BaTiO$_3$ powders were carefully studied by X-ray diffraction (XRD). Observations of the powders using scanning electron microscopy (SEM) were done in order to correlate the grain size with the luminescent properties. A comparative study of the spectroscopy properties constituted by emission, absorption spectra, and fluorescence decay measurements using NIR excitation were done. The Yb$^{3+}$ ions pairs emission was measured in the green region at about 500 nm when pumping at 940 nm.

[doi:10.2320/matertrans.MRA2008407]

(Received October 30, 2008; Accepted April 14, 2009; Published June 25, 2009)

Keywords: sol-gel, barium titanate, ytterbium, decay time, luminescence, powders

1. Introduction

There has been a great interest in perovskite-type Barium Titanate material due principally to its ferroelectric properties and its high dielectric constant. This material has been used in the electronic industry for dielectric capacitors, resistors, transducers and ferroelectric memories, as well as in missile guidance, submarine sonar, acoustic mines, filters, resistors, transductors and ferroelectric memories, as well as in missile guidance, submarine sonar, acoustic mines, filters, resistors, transductors and ferroelectric memories, as well as in missile guidance, submarine sonar, acoustic mines, filters, resistors, transductors and ferroelectric memories, as well as in missile guidance, submarine sonar, acoustic mines, filters, resistors, transductors and ferroelectric memories, as well as in missile guidance, submarine sonar, acoustic mines, filters, resistors, transductors and ferroelectric memories, as well as in missile guidance, submarine sonar, acoustic mines, filters, resistors, transducrors and ferroelectric memories, as well as in missile guidance, submarine sonar, acoustic mines, filters, resistors, transductors and ferроэлектрических памяти, а также в миссионной навигации, подводных акустических мин, фильтрах, резисторах, трансдьюсерах и ферроэлектрических памятях, а также в миссионной навигации, подводных акустических мин, фильтрах, резисторах, трансдьюсерах и ферроэлектрических памятях, а также в миссионной навигации, подводных акустических мин, фильтрах, резисторах, трансдьюсерах и ферроэлектрических памятях, а также в миссионной навигации, подводных акустических мин, фильтрах, резисторах, трансдьюсерах и ферроэлектрических памятях, а также в миссионной навигации, подводных акустических мин, фильтрах, резисторах, трансдьюсерах и ферроэлектрических памятях, а также в миссионной навигации, подводных акустических мин, фильтрах, резисторах, трансдьюсерах и ферроэлектрических памятях, а также в миссионной навигации, подводных акустических мин, фильтрах, резисторах, трансдьюсерах и ферроэлектрических памятях, а также в миссионной навигации, подводных акустических мин, фильтрах, резисторах, трансдьюзеров и ферроэлектрических памятях.

2. Experimental Procedure

Barium 2, 4 pentanediolate (Ba(C$_3$H$_7$O$_2$)$_2$, Alfa Aesar), ytterbium chloride hydrate (YbCl$_3$·6H$_2$O, 99.9%, Alfa Aesar) and titanium isopropoxide (Ti(OPri)$_4$; 97%, Aldrich) were used as starting materials. The chelating chemical stabilizing agents were: glyacial acetic acid (C$_2$H$_4$O$_2$, 99.8%, Fermont) and acetylacetone (2,4-pentanediene, C$_5$H$_8$O$_2$, ≥99%, Aldrich). Ytterbium chloride hydrate was mixed separately with isopropyl alcohol. The barium 2,4-pentanediolate was dissolved with ytterbium chloride hydrate solution in molar ratios of 0.89 : 0.02, 0.89 : 0.04 and 0.89 : 0.08 for 2, 4 and 8% mol respectively; thereafter, the precursor solution was stabilized by adding acetylacetone and acetic acid. (Acac)$_2$H and H-(OAc)$_2$ were added in complexation molar ratios Ti : (Acac)$_2$H = 1 : 10 and Ti : OAc = 1 : 8. The mixture was vigorously stirred at 70°C for 15 min. The procedure resulted in the preparation of a transparent yellow-orange sol with a 1.25 molL$^{-1}$ concentration. The barium titinate xerogels were prepared by drying the doped solutions at 80°C for 24h. The xerogels were heat-treated at 700°C and 1200°C in order to densify and crystallize the sol-gel powders. The dried gels were investigated by Thermogavimetric (TG) and Differential Thermal (DTA) analyses, and the thermograms were recorded from 25 to 1200°C using a Setaram Sestys 2000 apparatus at a scan rate of 5°C min$^{-1}$ in air flow. The crystalline phase of the samples was performed at room temperature on a powder diffractometer (Bruker D8Advance) using CuKα radiation (0.15418 nm). Scanning electron microscopy (SEM) obser-
vations were performed in order to inspect the microstructure of the samples using a scanning electron microscope (Hitachi S-4200). Furthermore, luminescence spectra were obtained by pumping Yb doped BaTiO$_3$ powders with a Spectra Physics Quanta-Ray Nd:YAG-MOPO tunable laser system and the luminescence was collected at a right angle by an optical system and dispersed by an Acton Research SpectraPro 500i spectrometer with two Hamamatsu PMT-R326 detectors for the NIR region.

3. Results and Discussion

3.1 DTA and TGD analyses of BTO powders

TG and DTA curves of the ytterbium doped BaTiO$_3$ powders dried at 120°C for 24 h are presented in Fig. 1. The total weight loss (about 30 mass% during the decomposition reaction) is observed in the TG curve. The first weight loss of 7 mass% occurs up to 300°C, results of the evaporation of alcohol and removal of water which is related with an endothermic peak situated at 106°C. Two endothermic peaks situated between 320 and 450°C represent the removal of a carboxylic group of metals present in the gel associated with a mass reduction of ~2 mass% and pyrolysis of organics (9 mass%) occurring during the process of thermal treatments. Additionally, one exothermic peak observed at 376°C is correlated with the decomposition of alcoxy-groups (7 mass% of weight loss). The transformation of amorphous decomposition products in barium titanate takes place when the last portion of organic residues is burning out, and it is marked by the presence of an exothermic peak around 700°C. According to Madarasz, it is assumed that there is no significant loss of titanium during the decomposition process; for the TiO(acac)$_2$:H$_2$O complexes for samples with acetylacetonate content higher than 0.49, the acetylacetate anion deficiency is compensated with hydroxide ions instead of organic double charged anions remaining in the condensed phase. After 800°C, an exothermic peak could be associated with the decomposition of the barium carbonate phase formed by a reaction with acetyl groups disappearing with increasing temperature up to 814°C and accompanied by a continuous weight loss (3 mass%). Some reports had shown that some carbonates would be formed during the thermal decomposition process of the Ba–Ti-precursor gel. In the present work, the carbonate components are present in a very small concentration; no peaks corresponding to carbonates can be identified in the XRD patterns of the powders annealed at 700–850°C (Fig. 2). A further increase in the temperature beyond 820°C should promote crystallization of BaTiO$_3$, but no longer relating to any chemical reaction.

3.2 XRD studies and morphology

The samples were heat treated at these temperatures in order to study the structural evolution of the powders. Two effects were studied: the effect of the heat treatment on BaTiO$_3$:Yb$^{3+}$ powders heat treated at 700°C, 850°C, 1000°C and 1200°C (presented in Fig. 2), and the effect of the Yb$^{3+}$ on the BaTiO$_3$ structure doped at 2%, 4% and 8% mol powders annealed at 700°C (shown in Fig. 4). Considering first the effect of the heat treatment on BaTiO$_3$:Yb$^{3+}$ 2% mol, it is observed that the barium titanate gels heat treated at these temperatures show a structure depending on thermal treatments: the BaTiO$_3$:Yb$^{3+}$ powders thermally treated at 700°C exhibited cubic structure due to the fact that there is no splitting evident in the (2 0 0) diffraction peak; for powders sintered at 850°C, it is possible to observe a shift on the (2 0 0) 0. Nevertheless, as for the samples heat treated at 700°C, the absence of any shoulder peak at 2θ ~ 52° confirms the presence of a cubic phase. For the BaTiO$_3$:Yb$^{3+}$ powders sintered at 1000°C, the gradual splitting of (2 0 0) plane of the cubic into tetragonal (2 0 0) and (0 0 2) reflections was observed, in agreement with Amamy et al. After 1200°C thermal treatment, BaTiO$_3$:Yb$^{3+}$ 2% mol powders show well-defined splitting of (0 0 2) and (2 0 0) peaks at around 2θ ~ 45°. The crystal size of BaTiO$_3$:Yb$^{3+}$ was estimated from the broadening of the corresponding XRD peaks using the Scherrer equation: L = Kλ/(β cos θ); where L is the crystal size, λ is the wavelength of the X-ray radiation (1.5406 nm) for Cu Kα, K is usually taken as 0.89, and β is the line width at half-maximum height after correcting for equipment broadening. The Rietveld refinement method was used to refine the structure of the all the phases present in the samples. This is a proven method for the quantitative determination of amorphous and crystalline phases so as to determine their structural parameters (c/a). The MAUD program, which applies the RITA/RISTA method, was used for the refinement analysis.

The crystal sizes and tetragonality values of BaTiO$_3$:Yb$^{3+}$ powders are presented in Table 1. As can be observed, both the tetragonality and crystal size were gradually increased as the temperature increased. The maximum value obtainable was observed at 1200°C, corresponding to 1.0049 for powders exhibiting a crystal size of ~50 nm, and the minimum tetragonality of 1.0001 was observed for samples sintered at 700°C having a crystal size of ~32 nm. Recently, Yb$^{3+}$ doped BaTiO$_3$ powders synthesized by sol-gel process,
suggested an enhanced stability for the cubic and tetragonal phase structures when the grain size is below 33 nm and above 45 nm respectively. Thus, the stabilization of BaTiO$_3$:Yb$^{3+}$ cubic phase was observed for 700 and 850°C, due to the presence of particles constituted of nanocrystals with mean diameter sizes of 32 and 33 nm. Based on these observations, the BaTiO$_3$ ferroelectric tetragonal structure was stabilized by heating powders at a higher temperature.

The XRD patterns for powders synthesized with the different Yb$^{3+}$ doping concentrations are presented in Fig. 4. In this figure, it is possible to observe that barium titanate crystallizes in a cubic phase for Yb$^{3+}$ 2, 4 and 8% mol. The mean crystallite diameters (MCD) were estimated to be in the range 32 to 36 nm. The MCD calculated values for BaTiO$_3$:Yb$^{3+}$ indicate that the ytterbium doping ion in BaTiO$_3$ does not affect the crystallite size and the crystal structure, as presented in Fig. 3. It was stated that there are two stages of substitution of rare earth elements in BaTiO$_3$.17 In the first stage, Ti$^{3+}$ ions located on the Ba site are replaced by the rare earth elements. In the second stage, Ba$^{2+}$ ions on the A site are also mainly replaced by rare earth elements. Yb$^{3+}$ ions (0.098 nm) most probably replaced Ba$^{2+}$ (0.156 nm) cations rather than Ti$^{4+}$ (0.065 nm), whose radius seems too small. When Yb$^{3+}$ was introduced to BaTiO$_3$, three Ba$^{2+}$ sites were substituted by two Yb$^{3+}$ neighbors to maintain electrical neutrality, and so one vacancy was created, consequently the composition expected is Ba$_{(1-0.06)}$Yb$_{0.06}$TiO$_3$. This behavior is similar for barium titanate powders doped with Eu$^{3+}$.18

Scanning electron micrographs obtained on Yb$^{3+}$ doped BaTiO$_3$ powders as a function of temperature and Yb$^{3+}$ concentration are presented in Figs. 2 and 4 respectively. Figure 2 shows particles characterized by agglomerates with sizes varying from 0.21 μm at 700°C to 0.52 μm at 1000°C. Spherical forms are associated with smaller particles that form irregular clusters or faceted sheets. After 1200°C thermal treatment, the morphology was characterized by agglomerates and nearly spherical particles of about 0.56 μm. A small fraction of bigger crystals of about 3 μm was also detected. Figure 4 shows the Yb$^{3+}$ content dependence on the powders’ microstructure. The morphology associated with 2% mol Yb$^{3+}$ doping concentration changed dramati-
cally from regular and rounded particles to irregular clusters with faceted sheets when barium titanate powder was doped at 4\% mol Yb$^{3+}$. At a higher doping concentration, a morphology and texture modification occurred, showing aggregates of 500 nm in size, which could be associated with the formation of secondary phases as the pyrochlore Yb$_2$Ti$_2$O$_7$, as was reported for Yb$^{3+}$ doped BaTiO$_3$ powders with a concentration equal to or more than 5\% at.19

3.3 Absorption and emission spectra

The absorption spectra of BaTiO$_3$ doped 2, 4 and 8\% mol Yb$^{3+}$ powders annealed at 1200°C is shown in Fig. 5; that of BaTiO$_3$:Yb$^{3+}$ 4\% mol heat-treated at 700°C is also shown for comparison. The broad absorption band between 900 and 950 nm (splitting of the multiplet $^2F_{5/2}$) on the BaTiO$_3$ crystallized in cubic phase (700°C) changed to a single band situated around 900 nm in the powder heat-treated at 1200°C. This absorption of Yb$^{3+}$ is similar to that observed in many other Yb$^{3+}$ doped crystals and is related to the electronic transitions $^2F_{5/2} \rightarrow ^2F_{7/2}$ within 4f electronic shell of Yb$^{3+}$ ions.20 Notice that in Fig. 5 the absorption intensity increases with the doping concentration.

The fluorescence spectra of BaTiO$_3$:Yb$^{3+}$ (2, 4, and 8\% mol) powders heat-treated at 1200°C excited at 940 nm are presented in Fig. 6. This figure also shows the emission spectrum of the BaTiO$_3$:Yb$^{3+}$ (4\% mol) annealed at 700°C. The emission spectrum of the cubic barium titanate gel powder (700°C) shows an emission peak at 980 nm; nevertheless, when the structure is heat-treated at 1200°C (presence of the tetragonal phase), the emission spectra consists of a broad band from 970 to 1010 nm, with a maximum at 980 nm corresponding respectively to the $^2F_{5/2} \rightarrow ^2F_{7/2}$ transitions (5→1). Changes in emission spectra due to the Yb$^{3+}$ ions concentration are shown in

Fig. 4 XRD patterns and the SEM images of BaTiO$_3$ powders doped at different Yb$^{3+}$ concentrations heat treated at 700°C.

Fig. 5 Absorption spectra of BaTiO$_3$ powders doped at different Yb$^{3+}$ concentrations heat treated between 700 to 1200°C.

Fig. 6 Emission spectra of 2, 4 and 8\% mol Yb$^{3+}$ doped BaTiO$_3$ powders heat treated at 1200°C and 4\% mol heat treated at 700°C.
pairs and thus these two ions emit not in the 1.0 region but in the 500 nm region. To explain the ytterbium cooperative emission, one might consider that two neighboring ions are close enough to form non-equivalent centers and energy transfers between different sites; also, this non-exponentiality became more intense in samples treated at 700°C that presented an almost exponential stage. Crystal size of the powders considerably decreases as the temperature increases from 700 to 1200°C. The doping concentration did not show an influence on the structure of the powders. Thin films and their luminescence properties will be produced based on this work.

Acknowledgements

The authors gratefully acknowledge the financial support of this work by the SEP-CONACYT projects 47279, 59408 and SIP-IPN projects 20090546, 20090528. M. García acknowledges PhD scholarship from CONACYT. The authors would like to thank David Nentwick for his editing work on this paper. The authors would also like to thank M. García Murillo for her assistance.

REFERENCES