High Pressure Synthesis of Novel Mg(Ni$_{1-x}$Cu$_x$)$_2$ Hydrides ($x = 0$–0.2)

Riki Kataoka*, Atsunori Kamegawa, Hitoshi Takamura and Masuo Okada

Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan

In our previous papers, we have reported the hydrogenation of MgNi$_2$ with C36-type structure under GPa-order hydrogen pressure. In this paper, the effect of Cu substitution in MgNi$_2$ was studied on the crystal structures, thermal stabilities and hydrogen contents of Mg(Ni$_{1-x}$Cu$_x$)$_2$ hydrides ($x = 0$–0.2). The hydrides were obtained by high pressure synthesis using cubic-anvil-type apparatus at 973 K for 8 h under 5 GPa. The hydrides were found to have primitive orthorhombic ($Pmmn$, $x = 0.0$–0.1) and body-centered tetragonal structures ($I4/mmm$, $x = 0.15$–0.2). Their hydrogen contents were estimated to be 2.23–2.32 mass%. Dehydrogenation temperature decreased from 460 K ($x = 0.0$) to 429 K ($x = 0.20$) with increasing amount of Cu substitution. After dehydrogenation, the C36-type phase was observed by X-ray diffraction (XRD).

1. Introduction

Magnetic based alloys are considered to be useful as hydrogen storage media because of their high hydrogen-storage capacity. However, there are some problems of high working temperature and poor kinetics. In order to overcome these problems, a number of studies have been conducted for exploring new Mg-based alloys and hydrides using conventional metallurgy techniques such as melting, sintering, and ball milling.

High pressure synthesis is known to be an effective method for exploring novel compounds. Several new hydrides that can be used for hydrogen storage have been prepared using this method. High pressure synthesis is mainly classified into two groups according to the pressure-transmitting medium: an autoclave apparatus with gas media and an anvil apparatus with solid media. For example, CsMgH$_3$, LaMg$_2$H$_7$, CeMg$_2$H$_6$, Mg$_2$MnH$_6$, Mg$_2$NiH$_4$, Mg$_2$Cu, Mg$_{80}$Cu$_{21}$, and Mg$_2$Ni$_{1-x}$Cu$_x$ have been prepared under a high pressure of around 10 MPa by using the autoclave apparatus. On the other hand, Mg$_2$MnH$_6$, Sr$_4$Mg$_2$H$_8$, and several other compounds have been prepared under high pressure of the order of gigapascals by using the anvil apparatus. The author’s group have also reported the synthesis of Mg$_2$Ni$_{1-x}$H$_4$, Mg$_2$MnH$_6$, Mg$_2$Ni$_{1-x}$Cu$_x$,Ni,Cu, Mg$_2$Ni$_{1-x}$Cu$_x$,Ni,Cu by using this method.

In our previous study, MgNi$_2$ (C36) was hydrogenated under a hydrogen pressure of the order of gigapascals rather than ambient hydrogen pressure. The hydrogen content of a novel MgNi$_2$ hydride was estimated to be 2.23 mass% and their dehydrogenation temperature was approximately 460 K, which is approximately 100 K lower than those of MgH$_2$ and Mg$_2$NiH$_4$. Moreover, Mg(Ni$_{1-x}$Cu$_x$)$_2$ ($x = 0.0$–0.2) was found to be hydrogenated, but the optimum condition of hydrogenation of Mg(Ni$_{1-x}$Cu$_x$)$_2$ was not investigated. Therefore, in this study, the optimum condition for hydrogenating Mg(Ni$_{1-x}$Cu$_x$)$_2$ ($x = 0.0$–0.3) intermetallics was investigated. The effects of Cu substitution on their crystal structures, thermal stabilities and hydrogen contents of Mg(Ni$_{1-x}$Cu$_x$)$_2$ ($x = 0.0$–0.3) hydrides were also investigated.

2. Experimental Procedures

Mg (99.9 mass%), Ni (99.9 mass%), and Cu (99.9 mass%) powders were used as raw materials. Powder mixtures with a nominal composition were pressed into pellets and placed into boron nitride (BN) containers. On the other hand, a NaCl container was used for synthesis using a hydrogen source. High pressure hydrogen was generated by the thermal decomposition of an internal hydrogen source (NaBH$_4$ + Ca (OH)$_2$). The NaCl container was expected to work as a gas-sealer and an electrical insulator. Samples were heated with or without a hydrogen source at 973–1073 K for 2 to 8 h under high pressure in the order of gigapascals and then quenched. Phase identification was carried out by powder X-ray diffraction (XRD) using Cu-K$_\alpha$ radiation. Then, lattice parameters were refined by using the CELL program. The thermal stabilities of the hydrides were investigated using a differential scanning calorimeter (DSC) under Ar-gas flow. The hydrogen contents were measured by fusion extraction analysis (LECO).

3. Results and Discussion

Figure 1 shows XRD patterns of Mg-67 mol%(Ni$_{1-x}$Cu$_x$)$_2$ ($x = 0.0$–0.3) prepared at 1073 K for 2 h under 2 GPa. Only the MgNi$_2$ (C36) phase was observed for each sample. Table 1 shows lattice parameters of Mg(Ni$_{1-x}$Cu$_x$)$_2$ ($x = 0.0$–0.3) calculated by using the CELL program. The lattice volume increased with an increase in the Cu content. This implies that Cu is substituted for Ni, since the atomic radius of Cu is larger than that of Ni. These samples were used as starting materials.

The Mg(Ni$_{1-x}$Cu$_x$)$_2$ ($x = 0.0$–0.3) reactivity with hydrogen was investigated. Figure 2 shows XRD patterns of MgNi$_2$ and Mg(Ni$_{0.95}$Cu$_{0.05}$)$_2$ treated with the hydrogen source at 973 K for 2 and 8 h under 5 GPa. In our previous study, a single phase of MgNi$_2$ hydride was obtained after it was treated for 2 h. However, the same result was not

*Graduate Student, Tohoku University
entirely hydrogenated. On the other hand, for hydrides with orthorhombic (P0) structure (Pmmm), the samples with hydrogen contents, and heat quantities of Mg(Ni$_{1-x}$Cu$_x$)$_2$ were observed. The C36 phase was identified, i.e., the hydride phase was not observed as almost single phases for Mg(Ni$_{0.95}$Cu$_{0.05}$)$_2H_y$ prepared at 1073 K for 2 h under 5 GPa. Figure 3 shows XRD patterns of C36-type Mg(Ni$_{1-x}$Cu$_x$)$_2$ (x = 0.0–0.3) prepared in the presence of the hydrogen source at 973 K for 8 h under 5 GPa, hydride phases were observed with almost single phases for x = 0.0–0.20. Therefore, the samples with x = 0.0–0.2 were thought to be almost entirely hydrogenated. On the other hand, for x = 0.3, only the C36 phase was identified, i.e., the hydride phase was not observed.

Table 1 Lattice constants of C36-type structure in Mg(Ni$_{1-x}$Cu$_x$)$_2$ (x = 0.0–0.3).

<table>
<thead>
<tr>
<th>x</th>
<th>Lattice constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a = 0.485(0)$ nm, $c = 1.590(0)$ nm</td>
</tr>
<tr>
<td>0.05</td>
<td>$a = 0.485(0)$ nm, $c = 1.590(0)$ nm</td>
</tr>
<tr>
<td>0.10</td>
<td>$a = 0.485(0)$ nm, $c = 1.593(1)$ nm</td>
</tr>
<tr>
<td>0.15</td>
<td>$a = 0.486(0)$ nm, $c = 1.590(0)$ nm</td>
</tr>
<tr>
<td>0.20</td>
<td>$a = 0.487(0)$ nm, $c = 1.593(1)$ nm</td>
</tr>
<tr>
<td>0.30</td>
<td>$a = 0.488(0)$ nm, $c = 1.597(1)$ nm</td>
</tr>
</tbody>
</table>

obtained when the Mg(Ni$_{0.95}$Cu$_{0.05}$)$_2$ treated for 2 h. On the other hand, when the sample was treated for 8 h, only MgNi$_2$-type hydride phase was obtained. Since Cu has lower catalytic effect of hydrogenation than that of Ni, longer synthesis time was required for the hydrogenation of Cu-substituted MgNi$_2$.

Figure 3 shows XRD patterns of C36-type Mg(Ni$_{1-x}$Cu$_x$)$_2$ (x = 0.0–0.3) prepared in the presence of the hydrogen source at 973 K for 8 h under 5 GPa, hydride phases were observed with almost single phases for x = 0.0–0.20. Therefore, the samples with x = 0.0–0.2 were thought to be almost entirely hydrogenated. On the other hand, for x = 0.3, only the C36 phase was identified, i.e., the hydride phase was not observed.

The crystal structures, lattice constants, thermal stabilities, hydrogen contents, and heat quantities of Mg(Ni$_{1-x}$Cu$_x$)$_2$ (x = 0.0–0.2) hydrides are summarized in Table 2.

Mg(Ni$_{1-x}$Cu$_x$)$_2$ hydrides with x = 0.0–0.1 had a primitive orthorhombic (PO) structure (Pmmm, No. 47). On the other hand, hydrides with x = 0.15–0.2 had a body centered tetragonal (BCT) structure (I4/mmm, No. 139). These crystal structures appear to depend on the Cu content of MgNi$_2$.

![Fig. 1 XRD patterns of Mg(Ni$_{1-x}$Cu$_x$)$_2$ prepared at 1073 K for 2 h under 2 GPa (x = 0.0–0.3).](image1)

![Fig. 2 XRD patterns of Mg(Ni$_{0.95}$Cu$_{0.05}$)$_2$ treated with hydrogen source at 973 K for 2 and 8 h under 5 GPa and MgNi$_2$ treated with hydrogen source at 973 K for 2 h under 5 GPa.](image2)

![Fig. 3 XRD patterns of Mg(Ni$_{1-x}$Cu$_x$)$_2$ treated with hydrogen source at 973 K for 8 h under 5 GPa (x = 0.0–0.3).](image3)
Although the affinity of hydrogen with Cu is less than that with Ni, the hydrogen contents of hydrides with $x = 0.05$–0.20 were higher (~2.3 mass%) than that of the MgNi$_2$ hydride.

Figure 4 shows DSC curves of Mg(Ni$_{1-x}$Cu$_x$)$_2$ hydrides for each sample. Endothermic peaks attributed to dehydrogenation were observed. The dehydrogenation temperature decreased with increasing Cu content. Particularly, the dehydrogenation temperature of Mg(Ni$_{0.8}$Cu$_{0.2}$)$_2$ hydride was 429 K, which was approximately 30 K lower than that of MgNi$_2$ hydride. Hydrogenation enthalpies of the hydrides at the dehydrogenation temperature were estimated from the endothermic peaks (Table 2). The estimated values were 23–30 kJ/mol-H, which are similar to those of well-known hydrogen storage alloys such as LaNi$_5$ and TiFe. It appeared that C36-type Mg(Ni$_{0.7}$Cu$_{0.3}$)$_2$ has been hydrogenated under hydrogen pressure of 5 GPa; however, as mentioned previously, it was not hydrogenated at all. This behavior might be due to the fact that catalytic rate of Cu than Ni. The activation energy required for the hydrogenation of C36-type MgNi$_2$ increased with an increasing Cu content. As a result, Mg(Ni$_{0.7}$Cu$_{0.3}$)$_2$ could not be hydrogenated under hydrogen pressure of 5 GPa. On the basis of this assumption, it might be possible that Mg(Ni$_{0.7}$Cu$_{0.3}$)$_2$ is hydrogenated under higher pressure.

Figure 5 shows XRD patterns of Mg(Ni$_{0.8}$Cu$_{0.2}$)$_2$H$_{1.4}$ before and after DSC measurements up to 623 K and 773 K. The diffraction peaks of the sample after heat treatment up to 623 K were broadened. On the other hand, the peaks after heat treatment up to 773 K were attributed to the C36-type phase. According to results of DSC measurements shown in Fig. 4, no thermal reactions were observed in the range of 623 K to 773 K. Therefore, the broadened patterns might not be due to the existence of an intermediate phase such as an amorphous phase, but C36-type phase with refined grains. Consequently, it should be noted that Mg(Ni$_{1-x}$Cu$_x$)$_2$ can be hydrogenated reversibly without disproportionation under high pressure of the order of gigapascals.

4. Conclusion

Hydrides of Mg(Ni$_{1-x}$Cu$_x$)$_2$ ($x = 0$–0.2) were synthesized at high pressure. These new hydrides were synthesized at 973 K for 8 h under 5 GPa. The hydrides had primitive orthorhombic (Pnmm, No. 47) ($x = 0.0$–0.1), and body-centered tetragonal structures (I4/mmm, No. 139) ($x = 0.15$–

Table 2 Crystal structures, lattice constants, dehydrogenation temperatures, hydrogenation contents, and enthalpies of Mg(Ni$_{1-x}$Cu$_x$)$_2$H$_y$ ($x = 0.0$–0.2).

<table>
<thead>
<tr>
<th>Composition</th>
<th>Crystal structure (Space group)</th>
<th>Lattice Constants</th>
<th>Dehydrogenation temperature</th>
<th>Hydrogen Content</th>
<th>Hydrogenation Enthalpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MgNi2H${1.2}$</td>
<td>PO (No. 47)</td>
<td>$a = 0.460$ nm, $b = 0.468$ nm, $c = 0.878$ nm, $V = 0.1900$ nm3</td>
<td>460 K</td>
<td>2.23 mass%</td>
<td>-30.6 kJ/mol-H</td>
</tr>
<tr>
<td>Mg(Ni${0.95}$Cu${0.05}$)2H${1.38}$</td>
<td>PO (No. 47)</td>
<td>$a = 0.460$ nm, $b = 0.469$ nm, $c = 0.881$ nm, $V = 0.1910$ nm3</td>
<td>446 K</td>
<td>2.32 mass%</td>
<td>-31.1 kJ/mol-H</td>
</tr>
<tr>
<td>Mg(Ni${0.90}$Cu${0.10}$)2H${1.37}$</td>
<td>PO (No. 47)</td>
<td>$a = 0.463$ nm, $b = 0.469$ nm, $c = 0.880$ nm, $V = 0.1910$ nm3</td>
<td>435 K</td>
<td>2.31 mass%</td>
<td>-25.4 kJ/mol-H</td>
</tr>
<tr>
<td>Mg(Ni${0.85}$Cu${0.15}$)2H${1.40}$</td>
<td>BCT (No. 139)</td>
<td>$a = 0.329$ nm, $c = 0.879$ nm, $V = 0.1910$ nm3</td>
<td>437 K</td>
<td>2.32 mass%</td>
<td>-26.3 kJ/mol-H</td>
</tr>
<tr>
<td>Mg(Ni${0.80}$Cu${0.20}$)2H${1.40}$</td>
<td>BCT (No. 139)</td>
<td>$a = 0.331$ nm, $c = 0.878$ nm, $V = 0.1923$ nm3</td>
<td>429 K</td>
<td>2.31 mass%</td>
<td>-23.6 kJ/mol-H</td>
</tr>
</tbody>
</table>

PO: primitive orthorhombic
BCT: body-centered tetragonal
Volume expansions were observed with increasing Cu content. The dehydrogenation temperature of these hydrides decreased from 460 K (x = 0.0) to 429 K (x = 0.20). The dehydrogenation temperature decreased by about 30 K due to Cu substitution. From fusion analysis, hydrogen content of the new hydrides were estimated to be 2.23–2.32 mass%. The H/M ratio of the hydrides increased with increasing Cu content. After dehydrogenation, Mg(Ni\textsubscript{1−x}Cu\textsubscript{x})\textsubscript{2} hydrides decomposed into Mg(Ni\textsubscript{1−x}Cu\textsubscript{x})\textsubscript{2} compounds and hydrogen. It should be noted that Mg(Ni\textsubscript{1−x}Cu\textsubscript{x})\textsubscript{2} could be hydrogenated reversibly without disproportionation high pressure of the order of gigapascals.

Acknowledgement

This work has been supported in part by New Energy and Industrial Technology Development Organization (NEDO).

REFERENCES