111Cd(\leftrightarrow 111In) Time Differential Perturbed Angular Correlation (TDPAC) Spectroscopy in Fe/Ag Films

Takashi Otomo1,*, Saburo Nasu1, Shotaro Morimoto1, Koji Baba1,*, Masayoshi Nishiyama2 and Tadashi Saito3

\begin{itemize}
\item 1Department of Physical Science, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
\item 2Central Workshop, Osaka University, Toyonaka 560-0043, Japan
\item 3Radioisotope Research Center, Osaka University, Toyonaka 560-0043, Japan
\end{itemize}

We have investigated the magnetic properties of Cd atoms decayed from 111In at the interfaces of Fe/Ag evaporated films. In order to determine the magnetic properties of the films, we have measured 111Cd(\leftrightarrow 111In) time differential perturbed angular correlation (TDPAC) spectra at room temperature as a function of distance from the interface. Fe and Ag were evaporated using electron beam evaporation, and small amounts of radioactive 111In were evaporated by resistance-heating. The evaporated films had the following stacking orders on kapton polyimide film substrate: (1) polyimide/Fe 50 nm/111In/Fe x nm/Ag 20 nm (x = 0.2, 0.3, 1, 3, 5, 10), (2) polyimide/Fe 50 nm/Ag x nm/111In/Ag 20 nm (x = 0, 0.2, 1). We used an Ag layer as a cap layer in order to prevent oxidation in air. TDPAC spectra were measured using a four-detector arrangement. The hyperfine magnetic field tends to be slightly larger when 111In is close to the interface of the Fe/Ag layer. The intensity of perturbation damps rapidly as 111In is close to the interface of Fe and Ag. These behaviors are thought to depend on electric field gradients and the influence of the surface roughness.

(Received September 20, 2005; Accepted January 24, 2006; Published March 15, 2006)

Keywords: 111Cd perturbed angular correlation, time differential perturbed angular correlation, hyperfine magnetic field, iron/silver film

1. Introduction

The physical properties of a particular localized area, such as a surface or an interface, dictate the nature of a material. In order to understand the nature of a [magnetic/non-magnetic] multilayer, it is necessary to investigate the microscopic nature of the surface and the interface of a magnetic layer with a non-magnetic layer. An effective method for this is to introduce small amounts of a radioisotope as probe atoms into the material for investigating the properties of the interface. The magnetism and local area structure can then be determined through hyperfine interactions (hyperfine magnetic field and electric field gradient) using Mössbauer spectroscopy and time differential perturbed angular correlation (TDPAC) spectroscopy. The purpose of this research is to investigate the surface and interface of an evaporated Fe film microscopically using the 111Cd(\leftrightarrow 111In) TDPAC.

It is thought that the magnetic moment at the surface of a ferromagnetic metal in vacuum is larger than the magnetic moment inside the crystal at low temperatures.1,3 It is concluded from theoretical calculations that the magnetization of the ground state (T = 0) increases at the surface of a magnetic metal such as Ni and Fe.

In previous work, the surface of Fe has been investigated by 57Fe Mössbauer spectroscopy,2,4 wherein an 57Fe layer was evaporated on the surface of a 57Fe layer for 57Fe Mössbauer spectroscopy. The dead-layer model has been proposed.2

In order to confirm this experimentally, the hyperfine fields of an ultra-thin Fe film (4 atomic layers thick) placed between Ag layers were measured using Mössbauer spectroscopy.3,4 The results showed that the hyperfine field is larger at the center of the Fe layer than at the interface at room temperature, and the hyperfine field is larger at the interface of the Fe layer than at the center at low temperatures under about 170 K.31

In order to study the properties of the selected layers in detail, the quantity of the atomic probes needs to be very small. If the quantity of atomic probes is much, we will get the nature of global film. If 57Co is evaporated instead of 57Fe, it is possible to carry out measurements with very small quantities of the probe. However, this is a difficult experiment, because of the long half-life of radioactive 57Co. The half-life of 57Co is 271 days. On the other hand, the lifetime of 111In is 2.8 days, and it is easy to use 111In for the experiments.

Some multilayer films sandwiched between non-magnetic and magnetic layers show giant magnetoresistance. Such films are expected to be used in sensors or as recording head materials. For these, a small difference in magnetic field is converted into an electric signal. It is a major technological hurdle to translate a minute magnetic field change to a large resistance change at room temperature. For improvements and further development of these multilayered films, we need to investigate and understand the magnetism of a layer in detail. The method of evaporation of 111In, in amounts of less than 1 monolayer, can introduce 111Cd probe atoms at a particular position in a film (an interface or a shallow position in a non-magnetic layer, etc.) and the hyperfine interactions of the probe nucleus can clarify the physical properties of the particular position.

2. Experimental Procedure

A very small quantity of 111In was introduced into an Fe film as described below. Fe was first evaporated using an electron beam evaporation method. Then, 111In was evaporated using a resistance heating method. Thus, a Fe/111In/Fe sandwich film was formed. All the experiments were

*Graduate Student, Osaka University
performed at the Toyonaka Annex to the Osaka University Radioisotope Center.

We extracted 111In from a carrier-free 111In HCl solution. The reason for this is that Cl atoms have an adverse influence on TDPAC spectra. Half of the 111In HCl solution (74 MBq, 1 mL, Nihon Medi-Physics) was dropped on a Tungsten boat (SF-156W, Nilaco). This 111In HCl solution contains 111In (about 4.2×10^{12} atoms per 1 mL) and Cd impurities (109Cd, 111Cd, etc.; less than about 1.1×10^{15} atoms per 1 mL) at the time of delivery as a result of the production process. The 111In HCl solution was dried to 111InCl, using infrared light. The W boat with 111InCl, was covered with another W boat facing each other. Both ends of the W boats were attached using Pt wire. We placed the boats in an atmosphere of Ar + 7% H$_2$ (purity of Ar: 99.99%, H$_2$: 99.9%) after forming a vacuum in the silica tube containing the W boats. The boats were heated to 873 K using an infrared image furnace. The temperature was raised for 30 min and was then maintained at the specified temperature for 5 min. 111In and 111InCl$_2$ melt at 873 K (the melting point of InCl$_2$: 498 K, InCl$_3$: 508 K, InCl$_4$: 859 K, In: 430 K, sublimation point of InCl$_3$: 859 K). 111In remained on the upper W boat since In tends to wet W. Cl$_2$ from 111InCl$_2$ flowed with the Ar + 7% H$_2$ gas to the gas flow outlet. After heating, the radioactivity of 111In and 111InCl$_2$ on the W boats were measured from a distance of 5 cm using a γ-ray Geiger-Muller (GM) survey meter (TGS-133, Aloka). The radioactivity of the 111In on the upper W boat and the radioactivity of the 111InCl$_2$ on the W boat on the lower side measured by the GM tube was about 0.1–0.2 MBq, respectively. However, this is a referential value, since the GM tube is only able to calculate hundreds of Bq precisely for its dead time. The remaining 111In and 111InCl$_2$ were found on the silica tube.

Polyimide/Fe 50.0(1) nm/111In/Fe x nm/Ag 20.0(1) nm (x = 0.2(1), 0.3(1), 1.0(1), 3.0(1), 5.0(1), 10.0(1)) multilayers, which were used in this study, were prepared using the following evaporation conditions. The purities of Fe and Ag were 99.999% and 99.999%. The Fe and Ag ingots were prepared using the traditional quartz vibrator method. In the same way, we made other evaporated films: polyimide/Fe 50.0(1) nm/Ag x nm/111In/Ag 20.0(1) nm (x = 0.2(1), 1.0(1)).

At room temperature, all TDPAC measurements were performed without the application of an external magnetic field. The films were cut and divided into 5 × 5 mm2 squares, and set parallel to the detector plane. However, in the case of the TDPAC measurement at 22 K, performed using a He gas cryostat, the film was placed perpendicular to the detector plane and an external magnetic field was applied (0.25(1) T) using permanent magnets (NEOMAX, height: 5 mm, diameter: 6 mm).

We measured TDPAC of polyimide/Fe 50.0(1)/111In/Fe x nm/Ag 20.0(1) nm (x = 3.0(1), 10.0(1)) after annealing at 473 and 673 K for 30 min using a Gold image furnace in an atmosphere of Ar + 7%H$_2$. We also prepared the following films and measured TDPAC: polyimide/Fe 50.0(1)/111InCl$_2$/Fe 10.0(1) nm/Ag 20.0(1) nm, and polyimide/Fe 50.0(1)/O/111In/Fe 10.0(1) nm/Ag 20.0(1) nm. In addition, we also prepared and measured TDPAC from bulk Fe containing isolated 111In probe atoms using an arc furnace.

The 111Cd($^{\gamma}$,111In) isotope is the best known nucleus for TDPAC measurements in materials science5 and has a suitable half-life at an intermediate state of $t_1/2 = 85.0$ ns. TDPAC measurements were performed with the well-known
171.3–245.4 keV $\gamma-\gamma$ cascade, successively emitted from 111Cd, using a conventional four-detector arrangement in a plane with 90 degree angular separations. Photomultiplier tubes (XP2020Q, Philips) mounted BaF$_2$ scintillators (cylinder form with diameter 1.5 inch, height 1 inch, OKEN) were used.

3. Results and Discussion

TDPAC measurements were performed at room temperature using a four-detector measurement arrangement. We can obtain the perturbation function $R(t)$ using the following equation, from eight time spectra, C_{ij}:

$$R(t) = 2 \left(\frac{C_{13}C_{24}C_{31}C_{42}}{(C_{13}C_{24}C_{31}C_{42})^{1/4} + 2(C_{14}C_{23}C_{41}C_{32})^{1/4}} \right)$$

(1)

$C_{13}, C_{24}, C_{31}, C_{42}$ are the time spectra of the angular correlations obtained with the counter set at 180°. $C_{14}, C_{23}, C_{41}, C_{32}$ are the time spectra of the angular correlation that are obtained at 90°. When there is a magnetic field vertical to the plane including the sample and the detectors, the left side of eq. (1) is given as follows:

$$R(t) = a_0 + a_1 \cos(2\omega_0 t)$$

(2)

Here, a_0 and a_1 are coefficients, and ω_0 is a Larmor frequency. If the directions of the magnetic moment are random, such as in a powder pattern, eq. (1) becomes:

$$R(t) = a_0 + a_1 \cos(\omega_1 t) + a_2 \cos(2\omega_1 t)$$

(3)

If we suppose that the Larmor frequency has a Gaussian distribution, eqs. (2) and (3) become:

$$R(t) = a_0 + a_1 \exp(-2\delta_0^2 t^2) \cos(2\omega_1 t)$$

(4)

$$R(t) = a_0 + a_1 \exp(-\delta_0^2 t^2) \cos(\omega_1 t) + a_2 \exp(-2\delta_0^2 t^2) \cos(2\omega_1 t)$$

(5)

Here, a_0 and a_1 are coefficients, and $\exp(-\delta_0^2 t^2)$ is the damping factor when ω_1 is the Gaussian distribution.

If a perturbation is due to a quadrupole interaction, and the spin of the intermediate state is 5/2, then:

$$R(t) = a_0 + a_1 \exp(-\delta_0^2 t^2) \cos(\omega_1 t) + a_2 \exp(-\delta_0^2 t^2) \cos(\omega_2 t) + a_3 \exp(-\delta_0^2 t^2) \cos(\omega_1 + \omega_2) t$$

(6)

Here, a_0, a_1, a_2 and a_3 are coefficients, ω_1 and ω_2 are related to the quadrupole frequencies, and $\exp(-\delta_0^2 t^2)$ expresses damping when ω_0 is the Gaussian distribution. In this paper, we do not discuss the electric field gradient and details of the theory regarding the electric field gradient are given in another paper. 5)

The TDPAC spectra of Fe/Ag containing 111In in an Fe layer can be fitted to a pure magnetic interaction pattern expressed by eq. (5), and the spectra of Fe/Ag containing 111In at the interface. Similarly, the spectra in an Ag film can be fitted to a pure electric quadrupole interaction pattern, which is expressed by eq. (6). The spectra were fit by one kind of Larmor frequency, and this means that there is a predominant component in the observed spectra. We can satisfactorily obtain the value of the hyperfine magnetic field except for the influence of the electric field gradient that appeared until about 10 ns in the PAC spectra [Figs. 2(a), (b), (c), (d), 3(a), (b), (c)]. The spectrum of the Fe/Ag film measured at 22 K was fitted using eq. (4) that contains only 2 times the Larmor frequency, because the magnetic moments are aligned by the external magnetic field which is perpendicular to the 4 detector plane. The spectrum of isolated 111In in the bulk Fe was fitted using eq. (5).

The Larmor frequency, ω_L, is proportional to a hyperfine magnetic field H as given below:

$$\omega_L = -\frac{g_N\mu_N H}{\hbar}$$

(7)

Here, g_N is a g-factor (-0.306 for 111Cd), and μ_N is a nuclear magneton.

We can consider the PAC spectra of polyimide/Fe 50 nm/111In/Fe x nm/Ag 20 nm ($x = 0.2, 0.3, 1, 3, 5, 10$) together with the power spectra, Fourier-transformed using a maximum entropy method (Figs. 2, 3). As 111In is introduced close to the interface, the intensity of the PAC spectrum is weak. This is because of an electric field gradient and the
influence of the turbulent Fe/Ag interface. When there are various 111In sites, the spectrum is the sum of the cosine curves of the various frequencies, and the intensity of the spectrum decreases. An Fe layer and a Ag layer form the interface, and slight atom mixing at the interface might occur. Also, lattice strains are induced in the crystal structure since the Cd atom has a larger atomic size and the lattice constants of Fe and Ag are different.

We now consider the PAC spectra of samples containing 111In at a deep location in relation to the Fe/Ag interface (Fig. 2). These are the samples containing 111In in the Fe layers at 1, 3, 5, and 10 nm from the Fe/Ag interface. When compared to the PAC spectrum of the 111In isolated in bulk Fe, they show the same trend as the spectrum for 111In in the bulk. In these spectra, the component of a Larmor frequency and the component of 2 times the Larmor frequency are different from the Fe/In/Ag interface, even though 111In is present in a very small amount, less than a monolayer. The low frequency component is thought to correspond to the component of an electric field gradient. The high frequency components, other than the Larmor frequencies, depend on mechanical noise. This noise is common to other spectra as well.

The hyperfine magnetic field as a function of the distance from the Fe/Ag interface is shown in Fig. 4. Hyperfine fields of 111In are slightly larger in the Fe film with 111In 0.2 nm from the interface than in the bulk Fe. From the results of fitting the spectra (Figs. 2, 3) in the range of 20–100 ns to minimize the influence of the electric field gradient and mechanical noise, the hyperfine fields of 111In in the Fe film 0.2 nm from the interface is calculated to be 38.9(3) T and the hyperfine field of 111In in the bulk Fe is 38.0(1) T.

Mössbauer spectroscopy of the Fe/Ag film was carried out in a previous study. This is the experiment that measured the Mössbauer spectra of Fe/Ag film at a low temperature, using a 57Fe layer as the probe. The hyperfine magnetic field even in the present study became large near the Fe/Ag interface. However, the previous study was performed at a low temperature, therefore a direct comparison is not possible. Freeman has reported a theoretical study in a Fe/Ag film at a low temperature. A hyperfine magnetic field becomes large at the interface of the Fe/Ag film at a low temperature.
temperature. However, it is thought that a hyperfine magnetic field becomes small at room temperature. When the temperature is high, the exchange field fluctuates. An Fe–Ag interface containing In is different from the Fe–Ag interface since In is larger than Fe. If a Fe/Ag film is measured at a low temperature, we can examine the consistency of the experimental results at a low temperature compared to past theoretical and experimental studies. However, there have been only few measurements at low temperatures thus far.

In the present study, we performed measurements at 22 K (Fig. 5). A film was placed vertical to the detector plane and an external magnetic field (0.25(1) T) was applied in parallel to the film. The reason for applying an external magnetic field is that only the 2 times Larmor frequency component can be observed. The frequency became large because of the measurement at low temperature. The hyperfine field is 40.7(6) T as calculated from the results of fitting and subtracting the external magnetic field. For comparison, the hyperfine field at room temperature is 38.3(2) T.

We now consider the TDPAC spectra of the sample containing 111In at the Fe/Ag interface and the sample containing 111In in the Ag layer (Fig. 6). The component of the Larmor frequency due to the hyperfine magnetic field from Fe is not clearly seen in these spectra. Only the low frequency component due to the electric field gradient can be seen. From this result, it can be concluded that there is no influence of the hyperfine magnetic field derived from Fe at the Fe/Ag interface and in the Ag layer.

The TDPAC was also measured after the evaporated film was annealed at 473 and 673 K for 30 m in a Gold image furnace in an atmosphere of Ar + 7%H$_2$. When films are produced, the temperature of the substrate is maintained at room temperature. Therefore, some defects and dislocations are present in them. The decrease in the amplitude in the PAC spectra became small after the film was annealed. This suggests that some defects and dislocations were removed after the annealing treatment. Prior to annealing, there are various states of 111In depending on the defects and dislocations present. Thus, the distribution of the frequencies is broad in the frequency spectra. As a result of annealing, some defects and dislocations decreased, and the number of the states of 111In decreased. However, the state does not change much by annealing after evaporation.

4. Conclusions

We produced an evaporated thin film of polyimide/Fe 50 nm/111In/Fe x nm/Ag 20 nm ($x = 0, 0.2, 0.3, 1, 3, 5, 10$ nm etc.). The amplitude of a PAC spectrum became weak with the introduction of 111In close to the interface. This is due to the fact that the interface is turbulent. On the other hand, hyperfine fields are slightly larger for 111In in the Fe bulk (38.0(1) T) to 111In 0.2 nm from the interface (38.9(3) T). The component of the Larmor frequency due to the hyperfine magnetic field from Fe is not seen clearly in the spectra of the sample containing 111In at the Fe/Ag interface and the sample containing 111In in the Ag layer.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research on Priority Area (B-12130205) and a Grant-in-Aid for Scientific Research (C) 17540326, from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
REFERENCES