Evaluation of a New Hydrogen Generating System:
Ni-Rich Magnesium Alloy Catalyzed by Platinum Wire in Sodium Chloride Solution

Chi-Yuan Cho, Kuo-Huang Wang and Jun-Yen Uan*

Department of Materials Engineering, National Chung Hsing University 250 Kuo-Kuang Rd., Taichung 402, Taiwan, R. O. China

Fuel cells are often seen as a long-term solution to environmental problems such as CO₂ emission associated with transportation. To ensure long-term sustainability and the supply of fuel, new renewable of hydrogen (H₂) generator have to be introduced. In this study, Ni-rich AZ91D magnesium alloy ingot, which was considered as waste material, was used as a H₂ generator in sodium chloride (NaCl) solution with catalyst. The chemical reaction Mg + H₂O → H₂ + Mg(OH)₂ occurred in NaCl aqueous solution. The H₂ evolution rate depended on the solution’s temperature (25 or 70 °C), length of catalyst (0.9 or 1.8 m) and the concentration of NaCl solution (5 or 10 mass%). The H₂ evolution rate increased with increasing the solution’s temperature. The catalyst (Pt wire) could significantly improve the H₂ generation rate.

(Received June 17, 2005; Accepted September 6, 2005; Published December 15, 2005)

Keywords: hydrogen, corrosion, nickel, magnesium ingot, catalyst

1. Introduction

The challenge for automotive industry is to develop a clean and energy efficient vehicle to meet the need of CO₂ reductions. Various options have been considered not only from the environmental aspect but also with respect to what they cost. Fuel cell is seen as a long-term solution to the environmental problems associated with transportation. Currently, PEMFC (proton exchange membrane fuel cell) is regarded as the most suitable for fuel-cell-driven automobiles. Hydrogen (H₂) is a power source of the PEMFC. The H₂ can be provided by several methods, including steam reforming of hydrocarbons, electrolysis water and gasification of heavy oil, coal or biomass. However, H₂ is only an energy carrier, not a source of energy such as oil, gas or natural gas. It must be manufactured using energy from other sources. For this reason, hydrogen production actually consumes more energy than that contained in the resulting hydrogen itself. To ensure long-term sustainability and the supply of fuel, a new renewable of H₂ generator have to be introduced. Amendola et al. have explored a new method to generate hydrogen gas from sodium borohydride (NaBH₄), sodium hydroxide (NaOH) and H₂O mixed solution with Ru-based catalyst. When NaBH₄ aqueous solution contacted with the catalyst, it spontaneously hydrolyzes to form H₂ gas and sodium borate (NaBO₂). Such investigations are significant for producing high quality hydrogen without polluting emissions. However, a disadvantage is that NaBH₄ is made from borax, a material that is found in substantial natural reserves globally. Currently, the production cost of NaBH₄ is still high, which is about 80 US dollars per kilogram.

2. Background of H₂ Generation from Ni-rich AZ91D Magnesium Ingot

Magnesium alloy was considered as an environment-friendly material; one of the reasons is that the alloy is recyclable. In ASTM B93 standard for magnesium alloy ingot, the maximum Ni content should be less than 10 ppm. It is because the Ni element causes the formation of Mg–Ni compound in Mg matrix, leading to an extremely deleterious effect on corrosion resistance of magnesium alloys. Once the Ni content in recycled ingot exceeds this limit, the ingot is usually discarded and considered as a waste. Thus, the Ni-rich ingot is inexpensive. The handling charge for magnesium scraps in recycling casthouse is approximately 1.1 US dollars per kilogram.

Electroless Ni plating is a common process for surface coating of AZ91D magnesium product. For the recycling of the magnesium scraps, it is difficult to remove Ni from the molten magnesium due to strong affinities between Ni and Mg. In present work, Ni-rich AZ91D magnesium ingot, which was considered as waste material, was used as a H₂ generator. Previous studies have suggested that the overall reaction for the corrosion of magnesium is:

\[
\text{Mg} + 2\text{H}_2\text{O} \rightarrow \text{H}_2 + \text{Mg(OH)}_2
\]

To promote H₂ generation rate, the overall reaction in NaCl solution with catalyst for the H₂ production may be expressed below:

\[
\text{Mg(s)} + 2\text{H}_2\text{O(l)} \xrightarrow{\text{NaCl solution}} \text{Catalyst} \rightarrow \text{H}_2\text{(g)} + \text{Mg(OH)}_2\text{(s)}
\]

In addition, the by-product, Mg(OH)₂, is a non-toxic chemical compound which is usually used as flame retardant.

*Corresponding author, E-mail: jyuan@dragon.nchu.edu.tw
had corrosion current density (I_{corr}) $\approx 2.7 \text{ A/m}^2$, which is about 2 order higher than the qualified ones ($\approx 8 \times 10^{-2} \text{ A/m}^2$). The experimental result revealed that the Ni-rich AZ91D magnesium ingots had inferior corrosion resistance.

This article addressed the hydrogen generation from the Ni-rich AZ91D magnesium ingot in NaCl solution with catalyst. The solution’s temperature, length of catalyst and the concentration of NaCl solution were studied to investigate the H$_2$ generation rate. The weight loss of Ni-rich AZ91 sample was examined. The findings in this report not only suggest a method to generate hydrogen but also promote the recycling of the used magnesium products that were plated with Ni.

3. Experimental Procedures

Table 1 presents the chemical compositions of the Ni-rich AZ91D magnesium alloy specimen. The Ni content in the specimen was 10 times greater than that in a qualified AZ91D magnesium ingot. The dimension of the Ni-rich AZ91D sample was 3 mm in thickness, 20 and 40 mm for the width and length. The samples were cleaned with ethyl alcohol, and then dried in furnace (70°C). Platinum (Pt) and copper (Cu) were used as catalyst. The Pt wire was 0.9 or 1.8 m in length and both with diameter 0.3 mm. The Cu wire was 0.9 mm in length and 0.3 mm in diameter. Figure 3 shows the catalyst (Pt or Cu wire) was being fastened to the sample. The sample with catalyst wire fixed with a float ball was then put into the cylinder. The liquid in cylinder would be drained out, owing to the hydrogen generation (Figs. 4 and 5). In addition, ultrasonic vibration equipment was applied to study the vibration effect on H$_2$ generation rate. The weight loss of the Ni-rich AZ91D specimen after H$_2$ generation experiment was measured. To obtain the weight loss data, corrosion product on the sample after H$_2$ generation was cleaned using the

<table>
<thead>
<tr>
<th>Composition</th>
<th>Al</th>
<th>Zn</th>
<th>Mn</th>
<th>Si</th>
<th>Cu</th>
<th>Fe</th>
<th>Ni</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass%</td>
<td>9.09</td>
<td>0.63</td>
<td>0.24</td>
<td>0.02</td>
<td>0.002</td>
<td>0.002</td>
<td>0.0148</td>
<td>Bal</td>
</tr>
</tbody>
</table>

Table 1. Chemical compositions of the Ni-rich AZ91D magnesium alloy.
procedures as described elsewhere. An X-ray diffractometer using Cu Kα radiation operated at 40 KV was employed to examine the chemical reaction product after the reaction for H₂ generation. An X-ray scanning speed of 1 degree/minute was used.

4. Results and Discussion

Figure 6 shows the H₂ volume generated from the Ni-rich AZ91D sample in 5 mass%NaCl aqueous solution in the absence of catalysts. As elucidated in Fig. 6, the temperature of the NaCl solution was able to affect the H₂ generation rate. The rate of the 70°C experiment was about three times higher than that of the sample in the 25°C solution. The weight loss of the Ni-rich AZ91D sample after the H₂ generation experiments was about 0.22 and 0.47 g for the 70 and 25°C experiments, respectively. The data of a previous study about H₂ generation from the aqueous borohydride (NaBH₄) solution and Ru catalyst were also plotted in Fig. 6. The H₂ generation rate of present study was lower, as compared to the previous result.

The data of H₂ volume generated from the Ni-rich AZ91D in the presence of Cu catalyst were depicted in Fig. 7. For exploring the effect of ultrasonic vibration on the H₂ production rate, the H₂ generation set-up (see Fig. 4) was placed into an ultrasonic vibration cleaner. The data points shown in Fig. 7 elucidated that ultrasonic vibration could effectively promote the H₂ generation rate. The H₂ generation rate from the Ni-rich AZ91D catalyzed by Cu wire was much higher than that from the same alloy without catalyst (cf., data in Fig. 6). Nevertheless, it is only about one half of the H₂ generation rate by NaBH₄ solution/Ru catalyst. Figure 8 presents the significant improvement of the H₂ production from the Ni-rich AZ91D sample catalyzed by Pt wire. The data points in Fig. 8 were obtained from the
experiments under ultrasonic vibration. As indicated in this figure, there are three groups of data sets: (a), (b) and (c). The data set “(a)” presented the H\(_2\) generation rate of the AZ91D sample catalyzed by 1.8 meters Pt wire (e.g., see the sample in Fig. 3) in the solution of 70°C. The sample in 10%NaCl solution generated H\(_2\) in a higher rate than the sample in the 5% solution did. Similar results were obtained for the samples tested in the NaCl solution at 25°C (see the data set “(b)” in Fig. 8). The H\(_2\) generation rate was substantially improved by using Pt wire as the catalyst for the reaction: Mg\(_2\)(s) + 2H\(_2\)O(l) → H\(_2\)(g) + Mg(OH)\(_2\)(s). For the H\(_2\) volume created from zero to ~550 mL, the data set “(a)” and “(b)” showed a good efficiency that spent no more than 800 s to achieve. The H\(_2\) generation rate is as good as the result of previous study via NaBH\(_4\) solution/Ru catalyst at 25°C.\(^6\) The weight losses of the samples for the H\(_2\) generation in Fig. 8 were in the range between 0.29 and 0.62 g.

One of the by-products of the catalyzed reaction is magnesium hydroxide (Mg(OH)\(_2\)), which is non-toxic, non-corrosive\(^19\) and is one of the most widely used metal hydroxide flame retardant additives for polymers.\(^20\) As the AZ91D sample being generating H\(_2\) in NaCl solution, some solid compound was being condensed in beaker, as schematically shown in Fig. 4. The compounds were collected and rinsed in distilled water to dilute the NaCl concentration. Figure 9 is the X-ray diffraction pattern of the compound, showing that the compound is Mg(OH)\(_2\). Another by-product, which was being synchronically mixed in the H\(_2\) gas stream during the hydrogen generation, is water vapor. Prehumidified H\(_2\) is needed in proton exchange membrane fuel cells,\(^6\) since the electric conductivity depends significantly on the water content in the fuel cell, especially in the membrane.\(^21,22\) As indicated in Fig. 10, several ice cubes were continually put on the top of the cylinder that containing the H\(_2\) gas produced by present method at 25°C. The condensed water drop (as shown in Fig. 10) was not seen until three hours were spent in keeping the container’s top cooled down. The experimental result suggested that the total gas volume not only contained H\(_2\) but also had a few water vapor. However, the present report did not examine the volume fraction of water vapor existing in the H\(_2\) gas stream.

![Fig. 10 A water drop condensed by ice cubes, showing the existence of water vapor in the generated hydrogen volume.](image)

![Fig. 11 (a) and (b), a set-up to view the hydrogen flame. The H\(_2\) was generated in the NaCl solution at 25°C.](image)

It was believed that the gas volume produced at 70°C (see Figs. 6 and 8) contained more water vapor than that at 25°C.

Figure 11 shows a set-up to view the hydrogen flame, and to see how long the flame could last. Hydrogen ignited and produced a bark-like noise, when mixed with the oxygen of the air.\(^23\) This reaction is the positive test for hydrogen gas.\(^23\)
The hydrogen was coming from the Ni-rich AZ91 sample catalyzed by Pt wire at the solution temperature of 25°C. Figures 11(a) and (b) reveal the hydrogen flame, which could keep burning for about 1 h.

5. Conclusion

(1) The corrosion rate of the Ni-rich AZ91D ingot can be greatly bigger than that of the qualified AZ91D alloy. The corrosion current density of the former material is 2.7 A/m^2, which is two order higher than that of the latter material.

(2) Ni-rich AZ91D magnesium ingot can be used to generate hydrogen (H$_2$) in NaCl aqueous solution. The NaCl concentration in the solution evidently affects the hydrogen generation rate. More NaCl dissolved in the solution resulted in a superior rate of H$_2$ generation. The rate of H$_2$ generation was experimentally confirmed to be increased by ultrasonic vibration.

(3) Platinum wire can be employed as the catalyst for the reaction: \(\text{Mg(s)} + 2\text{H}_2\text{O(l)} \rightarrow \text{H}_2\text{(g)} + \text{Mg(OH)}_2\text{(s)} \). Given the sample size (3 x 20 x 40 mm3) and the Pt wire used herein, ~550 mL of H$_2$ was produced in 10 minutes after the above chemical reaction at 25°C.

Acknowledgment

The authors thank Pinda Tech Co. Ltd., Taoyuan, Taiwan for providing the AZ91D magnesium alloy ingots used in this study. This work was financially supported by the National Science Council of Taiwan for which we are grateful (Contract No. NSC 93-2216-E-005-012).

REFERENCES