Protium Absorption/Desorption Characteristics of Mg$_2$Ni/LaNi$_5$ Composite

Hayato Okumura, Akihiro Matsui, Shintaro Yamagiwa, Shigeharu Kamado and Yo Kojima

Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan

In this study, an attempt is made to form composites by mechanical alloying (MA) or pulse-electric-current-sintering (PECS) for utilization of synergy effect to acquire both high capacity and ability to absorb/desorb protium at low temperatures. The composites have well-bonded structure consisting of Mg$_2$Ni alloy that has high hydrogenation capacity and LaNi$_5$ alloy that is capable of protium absorption/desorption at relatively low temperatures. During the absorption process, the protium content of MA + PECS and MA specimens at 80°C is over the theoretical value corresponding to the ratio of LaNi$_5$ phase. After absorption of the maximum protium content at 40°C by MA + PECS specimen, the desorption process was evaluated by TG/DTA analysis and the specimen starts desorbing protium at about 100°C. Consequently, the result suggests the occurrence of synergy effect during the absorption/desorption process of the obtained composites.

(Received May 20, 2002; Accepted July 5, 2002)

Keywords: hydrogen absorbing alloy, composite, Mg$_2$Ni alloy, LaNi$_5$ alloy, synergy effect

1. Introduction

Presently, negative changes in the earth’s environment and the depletion of fossil fuel are advancing due to human economic activities. Therefore, attention is being paid to hydrogen energy for breaking away from the dependence on fossil fuel and for protection from the global warming effect that results from the utilization of fossil fuel. However, hydrogen is very dangerous to handle because it exists in gaseous state at room temperature and atmospheric pressure, and its ignitability is high. Thus, we need the safest methods for utilizing hydrogen energy effectively. Therefore, hydrogen absorbing alloys that can store hydrogen compactly are attracting a lot of attention, and moreover, they are safer than liquefied hydrogen gas. Presently, researches for the development of various applications of hydrogen are being carried out. Among such applications, the research and development of new generation of vehicles that utilize hydrogen energy is extremely fierce, and fuel cell electric vehicles that utilize various methods of supplying hydrogen are being developed simultaneously. The sources of hydrogen considered include: methanol modification, gasoline modification, high pressure cylinder of 25 MPa hydrogen absorbing alloys and so on. Generally, it is said that the use of hydrogen absorbing alloys as fuel tank is the safest method of supplying hydrogen. However, in spite of the safety, Mn–Ni–Co–Al–Mn hydrogen absorbing alloys could not be satisfactorily utilized because of little hydrogen content and the mileage is too small compared to gasoline car. Therefore, attention is being paid to Mg$_2$Ni alloy among hydrogen absorbing alloys that are most suitable for transport applications because its theoretical protium storage capacity per unit weight is more than twice that of other alloys. Moreover, it is cheaper than other hydrogen absorbing alloys. However, it has problems of high protium absorption/desorption temperature and slow reaction kinetics. Therefore, numerous studies are being carried out on the use of nanocrystalline and amorphous phases obtained by mechanical alloying for the purpose of lowering the protium absorption and desorption temperature. Furthermore, development of new protium absorbing Magnesium system alloys is also being vigorously pursued.

It has been confirmed that in an alloy whose microstructure consists of intermingled fine Mg and Mg$_2$Ni phases, protium absorption/desorption characteristics at low temperatures are improved by synergy effect. This phenomenon occurs when the phase capable of protium absorption/desorption at low temperatures undergoes expansion/contraction during the reaction with protium and this expansion/contraction applies strain to the other neighbouring phase that can only absorb/desorb protium at high temperatures, thereby facilitating the reaction of the latter at low temperatures. The same result was also obtained by Zaluska et al. Furthermore, Orimo et al. reported that synergy effect occurred in ball-milled Mg–Ni alloys during hydrogen desorbing process for the nano-amorphous region. Similarly, Nagai et al. reported that in Mg–x mass%LaNi$_5$ (x = 10–60) sintered composite, LaNi$_5$ addition significantly lowered the temperature at which the hydrogen absorption of magnesium was initiated during the initial hydrogenation process, and the subsequent hydriding rate was also accelerated by the addition of up to 30% LaNi$_5$, beyond which the hydriding rate decreased steeply. Liang et al. reported that mechanically milled Mg–50 mass%LaNi$_5$ composite consists of Mg, Mg$_2$Ni and LaNi$_5$ phases, and the composite has excellent hydrogen absorption kinetics while the amount of protium absorption is 4.1 mass% at 250 to 300°C. These results show that hydrogen absorption kinetics become fast, but hydrogen absorbing/desorbing temperature could not be lowered. Thus the characteristic advantage of each phase could not be utilized because the microstructure of the composite shows that other phases crystallize, too.

Therefore in this study, an attempt is made to use mechanical alloying (MA) or pulse-electric-current-sintering (PECS) methods to synthesize composites that have well-bonded
structure consisting of Mg$_2$Ni alloy that has comparatively high hydrogenation capacity and LaNi$_5$ alloy that is capable of protium absorption/desorption at low temperatures in order to acquire both high capacity and ability to absorb/desorb protium at low temperatures. Mg$_2$Ni–50 mass%LaNi$_5$ mixed powder was used to prepare the specimens. At first, conditions that made it possible to obtain specimens in which the two phases are well-bonded were determined. Then, the microstructures of the obtained specimens were analyzed, and their protium absorption/desorption characteristics were also evaluated.

2. Experimental Procedure

Mg$_2$Ni alloy was prepared by melting Mg of 99.98% purity and Ni of 99.99% purity in high frequency induction furnace in argon atmosphere, while commercial LaNi$_5$ alloy was used. Table 1 shows the chemical composition of Mg$_2$Ni alloy. The as-cast specimens were degassed in vacuum condition for 4 h and then crushed in a glovebox in argon atmosphere into particles with sizes of less than 75 µm and 355 µm for PECS and MA, respectively, and then, both specimens were mixed using mass ratio of Mg$_2$Ni to LaNi$_5$ of 1:1. During MA, both the samples and stainless steel balls were placed in a pot mill, and using a conventional horizontal mill at a rotating speed of 105 min$^{-1}$ (roll surface speed is 31.0 m/s), the specimens were mechanically alloyed from 1 h through 16 h at ambient temperature. The mass ratio of stainless steel balls to the specimen was 100:1. The raw materials used for PECS were mixed in a mortar and the weight of the mixture was about 11.1 g. The sintering occurs while applying an even pressure of 30 MPa after filling into a die of 20 mm diameter made of graphite. The PECS was carried out by changing the heating rate, holding temperature and time in argon atmosphere of 0.14 MPa. The condition of pulse current was turning on the electricity for 39.6 ms and turning it off for 6.6 ms. At first, PECS conditions that made it possible to obtain specimens in which the Mg$_2$Ni and LaNi$_5$ phases are well-bonded and preserved were determined. Consequently, PECS specimens were prepared under the following conditions: heating rate of 0.86°C/s; holding temperature of 620°C and holding time of 0 s. For MA + PECS specimens, the heating rate of 0.83°C/s, holding temperature of 550°C and holding time of 0 s were utilized after mechanical alloying for 16 h.

The microstructures of the obtained composite samples were observed using both optical and scanning electron microscopes. They were also analyzed using X-ray diffractometer and EPMA analysis. The protium absorption/desorption characteristics were evaluated using as-mechanically alloyed specimens, in the case of MA specimen, while PECS, mixed powder and MA + PECS specimens were first crushed into particles with sizes of less than 75 µm. Hydriding properties were evaluated using Siverts’ method by measuring the change in protium pressure during heating from room temperature to 300°C at a constant rate of 0.5°C/min and an initial protium pressure of 0.88–0.90 MPa (Hydrogen purity: 7 N). The protium desorbing characteristics was evaluated by measuring the change in quantity of protium desorbed during heating from 30 to 400°C at a constant rate of 0.5°C/min in Ar atmosphere (6 N) using TG/DTA. Specimens whose surfaces were activated by absorption and desorption cycles were used for the evaluation of the desorption characteristics. The absorption process during activation was carried out at 250°C and 40°C under protium pressure of about 0.2 MPa and 0.7 MPa, respectively, for 3 h and the activation was determined to be finished when there was no further change in the absorption curve.

3. Results and Discussion

3.1 Microstructure

Figure 1 shows changes in (a) X-ray diffraction patterns and (b) scanning electron micrographs of Mg$_2$Ni–50 mass%LaNi$_5$ composite with mechanical alloying time. Diffraction peaks from Mg$_2$Ni phase decrease in intensity and broaden with mechanical alloying time. However, LaNi$_5$
phase peaks are observed clearly after mechanically-alloyed for 16 h. Therefore, Mg₂Ni phase becomes nano-crystalline with mechanical alloying time. The grain size is below 5 µm after mechanical alloying for 16 h as shown in Fig. 1(b).

Figure 2 shows X-ray diffraction patterns and microstructures of (a) mixed powder, (b) MA, (c) PECS and (d) MA + PECS specimens of Mg₂Ni–50 mass%LaNi₅ composite, while Fig. 3 shows the result of quantitative analyses of (a) PECS and (b) MA + PECS specimens of Mg₂Ni–50 mass%LaNi₅ composite. The microstructure of the mixed powder specimen consists of α (Mg), Mg₂Ni, MgNi₂ and LaNi₅ phases as observed from X-ray diffraction analysis as shown in the Fig. 2(a). In the MA specimen, which was mechanically-alloyed for 16 h, both Mg₂Ni and LaNi₅ phases decrease in intensity and the diffraction peaks of Mg₂Ni become broad as shown in the Fig. 1. As shown in Fig. 2(b), fine particles of Mg₂Ni phase are obtained, and LaNi₅ phase of 1 to 8 µm uneven particle sizes are embedded in Mg₂Ni particles by mechanical alloying for 16 h. However, there is no X-ray diffraction peak from an intermediate phase. The microstructure of the PECS specimen consists of Mg₂Ni, LaNi₅ and LaMg₂Ni₆ phases as observed from X-ray diffraction analysis as shown in Fig. 2(c). From the result of quantitative analysis shown in Fig. 3(a), the PECS specimen consists of an unknown phase having Mg:Ni ratio of 4:6. LaMg₂Ni₆ phase is formed along the phase boundaries of Mg₂Ni and LaNi₅ phases as an intermediate phase as observed from the SEM image and its schematic illustration. This means that Mg₂Ni and LaNi₅ phases are well bonded. Also, in the microstructure of the MA + PECS specimen shown in Fig. 2(d) and Fig. 3(b), the same phases observed in PECS specimen are observed, too. Furthermore, though there are unknown peaks in the X-ray diffraction pattern, the phase may be the unknown phase having Mg:Ni ratio of 4:6 obtained by EPMA. In the specimen mechanically-alloyed for 16 h, the particles of LaNi₅ phase is smaller than those in the PECS specimen, which are embedded in Mg₂Ni particles.

3.2 Protium absorbing characteristics

Figure 4 shows the changes in protium content absorbed by different specimens of Mg₂Ni–50 mass%LaNi₅ composite during heating under a rate of 0.5°C/min and an initial hydrogen pressure of 0.88–0.90 MPa, (a) before and (b) after activation of the specimens surface. The result obtained for as-cast specimen of Mg₂Ni is also shown in the figure. The LaNi₅ phase of the composite is expected to absorb protium of 0.7 mass%, which is half of the theoretical absorption content of LaNi₅ single phase. Similarly, the protium content of the Mg₂Ni phase of that composite should be 1.8 mass%, which is half of the theoretical absorption content of Mg₂Ni single phase. Therefore, the maximum theoretical absorption content of Mg₂Ni–50 mass%LaNi₅ composite is 2.5 mass%. Consequently, due to the circumstances mentioned above, the composite material is expected to be able to absorb protium over the theoretical value for LaNi₅ phase around room temperature due to the occurrence of synergy effect. Before activation process is carried out, as-cast specimen of Mg₂Ni can absorb protium from about 80°C. However, all of the specimens of the composite starts absorbing protium at about 40°C, but subsequently absorb protium slowly. This is because LaNi₅ phase can absorb protium under the condition of 0.9 MPa at room temperature. The MA and MA + PECS specimens absorb protium of about 1.2 mass% and 0.9 mass% at around 80°C, respectively, which is over the theoretical value for LaNi₅ phase. When LaNi₅ phase expands by protium absorption, strain is induced into Mg₂Ni phase if it is intermingled with the LaNi₅ phase, thereby accelerating protium absorption by Mg₂Ni phase even at 50°C, indicating the occurrence of synergy effect. Vucht et al. reported that the volume expansion associated with protium absorption by LaNi₅ phase is about 25% based on X-ray diffraction analysis. Therefore, such a high volume expansion must have gen-
Protium Absorption/Desorption Characteristics of Mg$_2$Ni/LaNi$_5$ Composite

Fig. 3 Result of quantitative analyses of (a) PECS and (b) MA + PECS specimens of Mg$_2$Ni–50 mass%LaNi$_5$ composite.

Fig. 4 Changes in protium content absorbed by different specimens of Mg$_2$Ni–50 mass%LaNi$_5$ composite during heating under a rate of 0.5°C/min and initial hydrogen pressure of 0.88–0.90 MPa (a) before and (b) after activation of the specimens surface.

After carrying out activation process, the as-cast specimen of Mg$_2$Ni absorbs 0.2 mass% protium at around room temperature to form Mg$_2$NiH$_{0.3}$ phase or protium combines with Magnesium to form Magnesium hydride. However, Mg$_2$Ni phase absorbs protium quickly from temperatures higher than 150°C. All of the specimens start to absorb protium at nearly the same temperature, because during the activation process, the specimens become fine and then the surface area of the specimens is increased with a lot of new active surface area. The starting protium absorption temperature of MA specimen is remarkably low. This may be because the oxygen component of the atmosphere absorbed by the specimen surface is removed by the activation process. In the mixed powder and PECS specimens of the composite, initially, protium is absorbed at about 30°C and desorbed at about 70°C, and then another absorption occurs at about 150°C. The absorption and desorption that occurs at about 30°C and 70°C, respectively, correspond to the absorption/desorption of LaNi$_5$ phase while the absorption that occurs at about 150°C corresponds to the absorption of Mg$_2$Ni phase. Therefore, it appears that the bonded particles dissociate at the boundaries due to the repetitive process of expansion/contraction that occurs during the absorption/desorption cycle of the activation process because the constituent particles are coarse. On the other hand, MA and MA + PECS specimens indicate an absorption curve similar to that obtained before activation pro-
cess. In the MA and MA + PECS specimens, the desorption of protium from LaNi$_5$H$_6$ phase is not observed at 70°C, instead the protium content gradually increases with rising temperature. This means that Mg$_2$Ni phase starts absorbing protium at about 70°C. This result suggests the occurrence of synergy effect because the joined parts are retained.

Figure 5 shows X-ray diffraction patterns and microstructures of cross sections of Mg$_2$Ni–50 mass%LaNi$_5$ composite of (a) MA and (b) MA + PECS specimens after absorbing protium at 250°C and 40°C, respectively. In (a), the MA specimen that absorbed protium at 250°C under hydrogen pressure of 0.9 MPa, Mg$_2$NiH$_4$ and LaNi$_5$ phases are observed from X-ray diffraction peaks; but LaNi$_5$H$_6$ is not observed. Mg$_2$Ni phase can absorb protium at 250°C, while LaNi$_5$ phase could not absorb protium probably due to no occurrence of synergy effect from Mg$_2$NiH$_4$ to LaNi$_5$ phase. In (b), MA + PECS specimen that absorbed protium at 40°C, LaNi$_5$ and Mg$_2$Ni phases together with their corresponding hydrides are observed from the X-ray diffraction pattern. The existence of Mg$_2$NiH$_4$ at 40°C indicates the occurrence of synergy effect from LaNi$_5$H$_6$ to Mg$_2$Ni. On the other hand, existence of LaNi$_5$ phase means that LaNi$_5$H$_6$ phase desorbs protium or the LaNi$_5$ phase could not absorb protium due to the presence of neighboring Mg$_2$Ni phase at 40°C. Moreover, only a small amount of protium of about 0.05 mass% is desorbed at 40°C under hydrogen pressure of 0.11 MPa.

3.3 Protium desorbing characteristics

Figure 6 shows the mass changes in hydride specimens of Mg$_2$Ni–50 mass%LaNi$_5$ composite during heating under a rate of 0.5°C/min with Ar flow by TG/DTA after protium absorption up to the maximum protium content at 40°C for MA + PECS specimen and at 250°C for the other specimens. The result obtained for as-cast specimen of Mg$_2$Ni is also shown in the figure. The amount of change of thermogravimetry represents the amount of protium desorption. The as-cast specimen of Mg$_2$Ni alloy starts desorbing protium from Mg$_2$NiH$_4$ phase at about 180°C, and the reaction finishes at about 230°C. And subsequently, magnesium solid-solution desorbs protium at about 320°C. However, the MA + PECS specimen starts desorbing protium at about 100°C, and the reaction finishes at about 210°C. The amount of desorption is about 0.73 mass% which is equivalent to 64% of absorbed protium content. If it is assumed that LaNi$_5$H$_6$ phase at the grain surface has already desorbed protium during holding at room temperature for about 100h in argon atmosphere because LaNi$_5$H$_6$ phase can desorb protium even at room temperature, and since the amount of desorption is over the theoretical absorption content of LaNi$_5$ phase in the composite, then it is possible that protium is desorbed from Mg$_2$NiH$_4$ phase. Therefore, the desorption of protium at such a low temperature of 100°C by the Mg$_2$NiH$_4$ phase suggests the occurrence of synergy effect from LaNi$_5$ to Mg$_2$NiH$_4$ during the desorption process. In other words, in the case where LaNi$_5$ hydride is located around Mg$_2$Ni hydride, synergy effect occurs when LaNi$_5$H$_6$ phase contracts due to protium desorption and contraction strain is exerted on the surrounding Mg$_2$NiH$_4$ phase. Furthermore, Higuchi et al. reported that in nano-composite three-layered Mg/Pd/Mg film prepared by RF-associated magnetron sputtering method, hydrogen in the palladium film becomes unstable and easily desorbs from both surfaces of the palladium films. This induces compression stress on both the top and bottom surfaces of the magnesium film and the hydrogen in the magnesium film becomes unstable, leading to low temperature dehydrogenation. This phenomenon is the so-called ‘cooperative phenomenon that hydrogen exhibits in nano-composite systems by elastic interactions’. Other specimens start desorbing protium like as-cast Mg$_2$Ni alloy. Since protium absorption at 250°C is done by only Mg$_2$Ni phase as shown in Fig. 5, synergy effect does not occur from Mg$_2$NiH$_4$ to LaNi$_5$ phase.

4. Conclusions

(1) In PECS and MA + PECS specimens, LaMg$_2$Ni$_6$ phase is formed as an intermediate phase along the phase boundaries of Mg$_2$Ni and LaNi$_5$ phases, and as a result the phase boundaries are well-bonded by pulse-electric-current...
sintering. But, in mechanically-alloyed specimen, no inter-
mediate phase appears as observed by the result of X-ray
diffraction analyses.

(2) It is confirmed that synergy effect occurs in MA +
PECS and MA specimens before and after activation process.
This indicates that the well-bonded interface between Mg$_2$Ni
and LaNi$_5$ phases remain intact even after activation.

(3) MA + PECS specimen of Mg$_2$Ni–50 mass%LaNi$_5$
composite absorbs protium of 1.09 mass% at 40°C. More-
over, it starts desorbing protium from Mg$_2$NiH$_4$ phase at
about 100°C.

Acknowledgements

This research is supported by a Grant-in-Aid for
Scientific Research on Priority Area (B) “Platform Science
and Technology for Advanced Magnesium Alloys” from
the Ministry of Education, Culture, Sports Science and
Technology of Japan.

REFERENCES

1592.
712–716.
8) H. Okumura, A. Matsui, S. Yamagiwa, S. Kamado and Y. Kojima:
9) A. Zaluska, L. Zaluski and J. O. Strom-Olsen: J. Alloy Compd. 289
344.
15) K. Higuchi, K. Yamamoto, H. Kajio, K. Toiyama, M. Honda, S.
83.