Materials Transactions Online

Materials Transactions, Vol.60 No.09 (2019) pp.1763-1768
© 2019 The Japan Institute of Metals and Materials

Effects of Fe on Microstructures and Mechanical Properties of Ti-15Nb-25Zr-(0, 2, 4, 8)Fe Alloys Prepared by Spark Plasma Sintering

Qiang Li1, Xufeng Yuan1, Junjie Li2, Pan Wang3, Masaaki Nakai4, Mitsuo Niinomi1, 5, 6, 7, Takayoshi Nakano6, Akihiko Chiba5, Xuyan Liu1 and Deng Pan8, 9

1School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
2International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, Braga 4715-330, Portugal
3Singapore Institute of Manufacturing Technology, 73 Nanyang Drive, 637662, Singapore
4Department of Mechanical Engineering, Faculty of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
5Institute for Materials Research, Tohoku University, Sendai 980-5377, Japan
6Department of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
7Department of Materials Science and Engineering, Graduate School of Science and Technology, Meijo University, Nagoya 468-8502, Japan
8Materials Genome Institute, Shanghai University, Shanghai 200444, China
9Research Center for Advanced Metallic Materials, Yangtze Delta Region Institute of Tsinghua University, 705 Yatai Road, Jiaxing, Zhejiang, China

Biomedical Ti-15Nb-25Zr-(0, 2, 4, 8)Fe (mol%) alloys are prepared by mixing pure element powders and spark plasma sintering (SPS). Specimens with diameters of 20 mm and thicknesses of 3 mm are obtained by sintering at 1000°C for 10 min followed by cooling in the furnace. Some of the specimens are then heat-treated at 900°C for 1 h followed by water quenching. Zr and Fe are dissolved in Ti; however, segregation of Nb is observed in all of the alloys. The β and α′′ phases are observed in the as-sintered and heat-treated specimens owing to the insufficient diffusion of the alloying elements. Fe stabilizes the β phase and provides a solution-strengthening effect. With the increase in the Fe content in the as-sintered specimen, the compressive strength and micro-Vickers hardness are improved in the Ti-15Nb-25Zr-(0, 2, 4)Fe alloys and slightly decreased in Ti-15Nb-25Zr-8Fe. The as-sintered Ti-15Nb-25Zr-4Fe alloy exhibits the maximum compressive strength of 1740 MPa. Although the plasticity is decreased by the Fe addition, a fracture strain of approximately 17% is obtained for Ti-15Nb-25Zr-4Fe, indicating a good plasticity. The heat treatment cannot eliminate the segregation of Nb, but can improve the plasticity and slightly increase the strengths of Ti-15Nb-25Zr-(0, 2, 4)Fe. Moreover, the heat-treated Ti-15Nb-25Zr-8Fe exhibits a high strength of approximately 1780 MPa and fracture strain of approximately 19%. Therefore, good comprehensive mechanical properties, including high strengths, high hardnesses, and good plasticities, can be obtained in Fe-added β-Ti alloys prepared by SPS and subsequent optional short heat treatment.


(Received 2019/01/29; Accepted 2019/03/29; Published 2019/08/25)

Keywords: spark plasma sintering, Ti alloy, compression, Fe

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Wang L.Q., Lin Z.J., Wang X.T., Shi Q.W., Yin W.Q., Zhang D., Liu Z.T. and Lu W.J.: Mater. Trans. 55 (2014) 141-146.
  2. Zhang L.C. and Attar H.: Adv. Eng. Mater. 18 (2016) 463-475.
  3. Peng Y.P., Ju C.P. and Lin J.H.C.: Mater. Trans. 59 (2018) 734-740.
  4. Liu Y., Li K.Y., Luo T., Song M., Wu H., Xiao J., Tan Y.N., Cheng M., Chen B., Niu X.R., Hu R., Li X.H. and Tang H.P.: Mater. Sci. Eng. C 56 (2015) 241-250.
  5. Ehtemam-Haghighi S., Prashanth K.G., Attar H., Chaubey A.K., Cao G.H. and Zhang L.C.: Mater. Des. 111 (2016) 592-599.
  6. Li Y.Y., Zou L.M., Yang C., Li Y.H. and Li L.J.: Mater. Sci. Eng. A 560 (2013) 857-861.
  7. Zhang L.C., Klemm D., Eckert J., Hao Y.L. and Sercombe T.B.: Scr. Mater. 65 (2011) 21-24.
  8. Shiraishi T., Yubuta K., Shishido T. and Shinozaki N.: Mater. Trans. 57 (2016) 1986-1992.
  9. Mohammed M.T.: Karbala Int. J. Modern Sci. 3 (2017) 224-230.
  10. Chui P.F.: Vacuum 143 (2017) 54-58.
  11. Ribeiro A.L.R., Junior R.C., Cardoso F.F., Filho R.B.F. and Vaz L.G.: J. Mater. Sci. Mater. Med. 20 (2009) 1629-1636.
  12. Henriques V.A.R., Galvani E.T., Petroni S.L.G., Paula M.S.M. and Lemos T.G.: J. Mater. Sci. 45 (2010) 5844-5850.
  13. Li Z.M., Zheng B.L., Wang Y.T., Topping T., Zhou Y.Z., Valiev R.Z., Shan A. and Lavernia E.J.: J. Mater. Sci. 49 (2014) 6656-6666.
  14. He Z.Y., Zhang L., Shan W.R., Zhang Y.Q., Jiang Y.H., Zhou R. and Tan J.: Acta Metall. Sin. (Engl. Lett.) 29 (2016) 1073-1080.
  15. Cui Y., Li Y., Luo K. and Xu H.B.: Mater. Sci. Eng. A 527 (2010) 652-656.
  16. Ozan S., Lin J.X., Li Y.C., Zhang Y.W., Munir K., Jiang H.W. and Wen C.E.: J. Mech. Behav. Biomed. Mater. 78 (2018) 224-234.
  17. Li Q., Niinomi M., Nakai M., Cui Z.D., Zhu S.L. and Yang X.J.: Mater. Sci. Eng. A 536 (2012) 197-206.
  18. Calderon Moreno J.M., Vasilescu C., Drob S.I., Neascu E.I. and Popa M.: Mater. Corros. 65 (2014) 703-714.
  19. Chen S.L.: Shanghai Nonferrous Metals 35 (2014) 47-52.
  20. Zafari A., Ding Y.P., Cui J.Z. and Xia K.N.: Metall. Mater. Trans. A 47 (2016) 3633-3648.
  21. Vajpai S.K., Ota M., Watanabe T., Maeda R., Sekiguchi T., Kusaka T. and Ameyama K.: Metall. Mater. Trans. A 46 (2015) 903-914.
  22. Wang D.J., Yuan H. and Qiang J.M.: Metals 7 (2017) 207.
  23. Yamanoglu R., Bradbury W., Olevsky E.A. and German R.M.: Met. Mater. Int. 19 (2013) 1029-1034.
  24. Yamanoglu R., Bradbury W., Karakulak E., Olevsky E.A. and German R.M.: Powder Metall. 57 (2014) 380-386.
  25. Zou L.M., Yang C., Long Y., Xiao Z.Y. and Li Y.Y.: Powder Metall. 55 (2012) 65-70.
  26. Wen M., Wen C., Hodgson P. and Li Y.: Mater. Des. 56 (2014) 629-634.
  27. Hussein M.A., Suryanarayana C. and Al-Aqeeli N.: Mater. Des. 87 (2015) 693-700.
  28. Ho W.F., Pan C.H., Wu S.C. and Hsu H.C.: J. Alloys Compd. 472 (2009) 546-550.
  29. Zhang B.B., Wang B.L., Wang Y.B., Li L., Zheng Y.F. and Liu Y.: J. Biomed. Mater. Res. Part B 100B (2012) 185-196.
  30. J.L. Murray: ASM Handbook, Volume 3 Alloy Phase Piagram, ed. by H. Baker and H. Okamoto, (ASM International, Electronic Vision, 1998) pp. 1194 & 1572.
  31. He Z.Y., Zhang L., Shan W.R., Zhang Y.Q., Zhou R., Jiang Y.H. and Tan J.: Trans. Nonferrous Met. Soc. China 27 (2017) 848-856.
  32. Taddei E.B., Henriques V.A.R., Silva C.R.M. and Cairo C.A.A.: Mater. Sci. Eng. C 24 (2004) 683-687.


© 2019 The Japan Institute of Metals and Materials
Comments to us :