Materials Transactions Online

Materials Transactions, Vol.60 No.09 (2019) pp.1755-1762
© 2019 The Japan Institute of Metals and Materials

Low Springback and Low Young’s Modulus in Ti-29Nb-13Ta-4.6Zr Alloy Modified by Mo Addition

Qiang Li1, Qiang Qi1, Junjie Li2, Masaaki Nakai3, Mitsuo Niinomi1, 4, 5, 6, Yuichiro Koizumi5, Daixiu Wei4, Kenta Yamanaka4, Takayoshi Nakano5, Akihiko Chiba4, Xuyan Liu1 and Deng Pan7

1School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
2International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
3Department of Mechanical Engineering, Faculty of Science and Engineering, Kindai University, Higashiosaka 577-8502, Japan
4Institute for Materials Research, Tohoku University, Sendai 980-5377, Japan
5Department of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
6Department of Materials Science and Engineering, Graduate School of Science and Technology, Meijo University, Nagoya 468-8502, Japan
7Materials Genome Institute, Shanghai University, Shanghai 200444, China

Deformation-induced higher Young’s modulus can satisfy the contradictory requirements of Ti alloys for spinal-fixation applications, which demand a high Young’s modulus to reduce springback during operations and a low Young’s modulus to prevent stress shielding effect for patients after surgeries. In this study, TNTZ-(1, 3, 5)Mo are designed by adding Mo and Ti to Ti-29Nb-13Ta-4.6Zr (TNTZ) in order to maintain low initial Young’s modulus and achieve low springback. All the solutionized alloys show single β phase with increasing the β stability by Mo addition. They show low Young’s moduli less than 65 GPa, similar ultimate tensile strength of 650 MPa and elongation around 20%. The springback of TNTZ-3Mo and TNTZ-5Mo is lower than that of TNTZ and TNTZ-1Mo owing to their more stable β phase. After cold rolling, TNTZ-3Mo shows the largest increasing ratio of 25% in Young’s modulus and the highest ultimate tensile strength owning to the appearance of deformation-induced ω phase. With the low initial Young’s modulus of 59 GPa, TNTZ-3Mo is a potential candidate to make the spinal rods in spinal fixation devices.


(Received 2019/01/29; Accepted 2019/05/16; Published 2019/08/25)

Keywords: biomaterial, titanium alloy, mechanical property, springback, deformation mechanism

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Niinomi M.: Metall. Mater. Trans. A 33 (2002) 477-486.
  2. Abdel-Hady M. and Niinomi M.: J. Mech. Behav. Biomed. Mater. 20 (2013) 407-415.
  3. Mukhtar S., Asghar W., Butt Z., Abbas Z., Ullah M. and Atta-Ur-Rehman R.: J. Cent. South Univ. 25 (2018) 2578-2588.
  4. Niinomi M., Nakai M. and Heida J.: Acta Biomater. 8 (2012) 3888-3903.
  5. Niinomi M.: Mater. Trans. 59 (2018) 1-13.
  6. Mikulewicz M. and Chojnacka K.: Biol. Trace Elem. Res. 142 (2011) 865-889.
  7. Sevcikova J. and Goldbergova M.P.: Biometals 30 (2017) 163-169.
  8. Hanawa T.: J. Artif. Organs 12 (2009) 73-79.
  9. Domingo J.: Biol. Trace Elem. Res. 88 (2002) 97-112.
  10. Fellah M., Aissani L., Samad M.A., Iost A., Zine T.M., Montagne A. and Nouveau C.: Acta Metall. Sin. (Engl. Lett.) 30 (2017) 1089-1099.
  11. Rho J.Y., Tsui T.Y. and Pharr G.M.: Biomaterials 18 (1997) 1325-1330.
  12. Sumitomo N., Noritake K., Hattori T., Morikawa K., Niwa S., Sato K. and Niinomi M.: J. Mater. Sci. 19 (2008) 1581-1586.
  13. Morinaga M.: Mater. Trans. 57 (2016) 213-226.
  14. Morita T., Uehigashi N. and Kagaya C.: Mater. Trans. 54 (2013) 22-27.
  15. Li Q., Niinomi M., Hieda J., Nakai M. and Cho K.: Acta Biomater. 9 (2013) 8027-8035.
  16. Steib J.P., Dumas R., Mitton D. and Skall W.: Spine. 29 (2004) 193-199.
  17. Nakai M., Niinomi M., Zhao X.F. and Zhao X.L.: Mater. Lett. 65 (2011) 688-690.
  18. Wood R.M.: Mater. Lett. 65 (2011) 688-690.
  19. Shinohara Y., Tahara M., Inamura T., Miyazaki S. and Hosoda H.: Mater. Trans. 56 (2015) 404-409.
  20. Zhao X.F., Niinomi M., Nakai M. and Hieda J.: Acta Biomater. 8 (2012) 1990-1997.
  21. Zhao X.F., Niinomi M., Nakai M., Hieda J., Ishimoto T. and Nakano T.: Acta Biomater. 8 (2012) 2392-2400.
  22. Li Q., Li J.J., Ma G.H., Liu X.Y. and Pan D.: Mater. Des. 111 (2016) 421-428.
  23. Liu H.H., Niinomi M., Nakai M., Cho K. and Fujii H.: Scr. Mater. 130 (2017) 27-31.
  24. Hao Y.L., Yang R., Niinomi M., Kuroda D., Zhou Y.L., Fukunaga K. and Suzuki A.: Metall. Mater. Trans. A 34 (2003) 1007-1012.
  25. Zhao X.L., Niinomi M., Nakai M., Miyamoto G. and Furuhara T.: Acta Biomater. 7 (2011) 3230-3236.
  26. Shanker A.K., Cervantes C., Herminia L.T. and Avudainayagam S.: Environ. Int. 31 (2005) 739-753.
  27. Zhou T., Aindow M., Alpay S.P., Blackburn M.J. and Wu M.H.: Scr. Mater. 50 (2004) 343-348.
  28. Bertrand E., Castany P., Péron I. and Gloriant T.: Scr. Mater. 64 (2011) 1110-1113.
  29. Lai M.J., Tasan C.C. and Raabe D.: Acta Mater. 111 (2016) 173-186.
  30. Hanada S., Masahashi N. and Jung T.K.: Mater. Sci. Eng. A 588 (2013) 403-410.
  31. Gorsse S., Le Petitcorps Y., Matar S. and Rebillat F.: Mater. Sci. Eng. A 340 (2003) 80-87.
  32. Marteleur M., Sun F., Gloriant T., Vermaut P., Jacques P.J. and Prima F.: Scr. Mater. 66 (2012) 749-752.


© 2019 The Japan Institute of Metals and Materials
Comments to us :