Materials Transactions Online

Materials Transactions, Vol.59 No.06 (2018) pp.976-983
© 2018 The Japan Institute of Metals and Materials

Quantification of Localized Water Image in Under-Film Corroded Steel with High Spatial Resolution, High Time Resolution, and Wide View by Neutron Radiography

Atsushi Taketani1, Yasuo Wakabayashi1, Yoshie Otake1, Yujiro Ikeda1, 2, Takumi Wakabayashi3, Kenji Kono3, Tetsuya Kai2, Kenichi Oikawa2, Hideyuki Sunaga1, Masako Yamada1 and Takenori Nakayama4

1RIKEN Center for Advanced Photonics, RIKEN, Wako 351-0198, Japan
2J-PARC Center, Japan Atomic Energy Agency, Naka-gun, Ibaraki 319-1195, Japan
3KOBELCO Research Institute, Inc., Kobe 651-2271, Japan
4Kobe Steel, Ltd., Kobe 651-2271, Japan

Information on the existence of localized water at corrosion locations is indispensable for precisely understanding the corrosion mechanism in steel. Small amounts of localized water in under-film corrosion have not yet been measured quantitatively.

Although we have demonstrated that neutron radiography, which has high sensitivity to the presence of hydrogen, is suitable method for detecting of water in the under-film corrosion of painted steel by utilizing the RIKEN Accelerator-driven Neutron Source (RANS), the spatial and time resolutions were insufficient to investigate under-film corrosion in detail. We then performed an imaging experiment on localized water in steel corrosion with higher space and time resolutions using the high-intensity neutron source at J-PARC. We obtained data with a spatial resolution of 0.6 mm, a time resolution of 15 s in a viewing area of 100 × 100 mm2. On the basis of the results for the quantitative imaging of localized water in corrosion, we have established a method suitable for directly imaging water in steel corrosion that employs neutrons.


(Received 2018/01/15; Accepted 2018/03/19; Published 2018/05/25)

Keywords: water imaging, neutron radiography, high spatial resolution, high time resolution, wide view area, localized water distribution, painted steel corrosion

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Committee on Cost of Corrosion in Japan: Zairyo-to-Kankyo 50 (2001) 490.
  2. N.D. Tomashov: Theory of Corrosion and Protection of Metals, (Macmillan Company, NY and Collier-Macmillan limited, London, 1966) chapter 15.
  3. ISO 9223: 2012, Corrosion of metals and alloys - Corrosivity of atmospheres - Classification, determination and estimation.
  4. Mansfeld F. and Kenkel J.V.: Corros. Sci. 16 (1976) 111.
  5. Shinohara T.: Bull. Iron Steel Inst. Jpn. 11 (2006) 215.
  6. Sauerbrey G.: Z. Phys. 155 (1959) 206.
  7. Seo M.: J. Surf. Finish. Soc. Jpn. 45 (1994) 1003.
  8. Yamada M., Otake Y., Taketani A., Sunaga H., Yamagata Y., Wakabayashi T., Kono K. and Nakayama T.: Tetsu To Hagane 100 (2014) 429.
  9. Taketani A., Yamada M., Ikeda Y., Hashiguchi T., Sunaga H., Wakabayashi Y., Ashigai S., Takamura M., Mihara S., Yanagimachi S., Otake Y., Wakabayashi T., Kono K. and Nakayama T.: ISIJ Int. 57 (2017) 155.
  10. JIS G 3106: 2015, Rolled steels for welded structure.
  11. JHS 403: 1997, Evaluation procedure of anti-corrosion property of paint.
  12., viewed 2017/11/16.
  13. Maekawa F., Oikawa K., Harada M., Kai T., Meigo S., Kasugai Y., Ooi M., Sakai K., Teshigawara M., Hasegawa S., Ikeda Y. and Watanabe N.: Nucl. Instrum. Methods A 600 (2009) 335.
  14. Arai M. : JPS Conf. Proc. 8 (2015) 036021.
  15. BITRAN BU-53LN:, viewd 2017/11/16.
  16. Nyquist H.: Am. Inst. Electr. Eng. Trans. 47 (1928) 617.
  17. ON Semiconductor KAI-11002:, viewd 2017/11/16.
  18. H.H. Uhlig and R.W. Revie: Corrosion and Corrosion Control, (John Wiley and Sons, Inc., New York, 1985) 3rd ed., chapter 8.
  19. Vernon W.H.J.: Trans. Faraday Soc. 23 (1927) 113.
  20. Vernon W.H.J.: Trans. Faraday Soc. 27 (1931) 255.
  21. Vernon W.H.J.: Trans. Faraday Soc. 31 (1935) 1668.
  22. Vernon W.H.J.: Trans. Electrochem. Soc. 64 (1933) 31.


© 2018 The Japan Institute of Metals and Materials
Comments to us :