Materials Transactions Online

Materials Transactions, Vol.59 No.06 (2018) pp.957-962
© 2018 Japan Foundry Engineering Society

Dynamic Measurement of Constraining Force from Green Sand and Casting Contraction of Gray Cast Iron during Cooling

Seigo Ueno1, Haruki Kashimura1, Yusuke Sano2, Tsuneo Toyoda3, Hiroyasu Makino4 and Makoto Yoshida3

1Graduate School of Modern Mechanical Engineering, Waseda University, Tokyo 169-8555, Japan
2Department of Modern Mechanical Engineering, Graduate School of Waseda University, Tokyo 169-8555, Japan
3Kagami Memorial Laboratory for Materials Science and Technology, Waseda University, Tokyo 169-0051, Japan
4SINTOKOGIO, Ltd., Nagoya 450-6424, Japan

This study investigated the effects of the restraint from green sand mold for cast iron during cooling process. Gray cast iron (JIS FC300, almost identical to ASTM 45) was cast in a green sand mold, and the constraining force to the casting from the sand mold and the contraction of the casting were measured dynamically from the beginning of solidification to 200°C. The measurement results obtained using the green sand mold were compared with those using the furan sand mold. The maximum constraining force in the green sand mold case was lower than that in the furan mold case. The contraction in the green sand mold at 200°C was greater than that in the furan sand mold. The results showed that the green sand mold restrains the casting less than the furan sand mold during cooling process.

[doi:10.2320/matertrans.F-M2018817]

(Received 2017/11/16; Accepted 2018/04/05; Published 2018/05/25)

Keywords: green sand mold, sand casting, residual stress, distortion, computer aided engineering, gray cast iron

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Report of Sub-Committee T.S.32, Internal Stress in Castings. In: Proceedings of the Institute of British Foundation, (U.K., 1952) pp. A179-A189.
  2. Marumoto N., Kashimura H., Yoshida K., Toyoda T., Okane T. and Yoshida M.: J. Mater. Process. Technol. 237 (2016) 48-54.
  3. Ahmed A. and Chandra U.: Computer Modeling and Simulation in Engineering 2 (1997) 419-448.
  4. Maijer D., Cockcroft S. and Jacot A.: Metall. Mater. Trans. A 31 (2000) 1201-1211.
  5. Metzger D., Jarrett New K. and Dantzig J.: Appl. Math. Model. 25 (2001) 825-842.
  6. Chang A. and Dantzig J.: Appl. Math. Model. 28 (2004) 533-546.
  7. Chunsheng L. and Richard H.K.: Modeling of Casting Welding and Advanced Solidification Processes XI (2006) 209-216.
  8. Lin Z., Monroe A., Huff C.K. and Beckermann R.C.: Modeling of Casting, Welding, and Advanced Solidification Processes XII (2009) 329-336.
  9. Baghani A. and Davami P.: Metall. Mater. Trans. B 45 (2014) 1157-1169.
  10. Motoyama Y., Takahashi H., Inoue Y., Shinji K. and Yoshida M.: J. Mater. Process. Technol. 212 (2012) 1399-1405.
  11. Motoyama Y., Takahashi H., Inoue Y., Shinji K. and Yoshida M.: J. Mater. Process. Technol. 213 (2013) 238-244.
  12. R.N. Parkins and A. Cowan: In: Proceedings of the Institute of British Foundation, (paper no.1062, 1953) pp. A101-A109.
  13. Motoyama Y., Inoue Y., Saito G. and Yoshida M.: J. Mater. Process. Technol. 213 (2013) 2270-2277.
  14. Inoue Y., Motoyama Y., Takahashi H., Shinji K. and Yoshida M.: J. Mater. Process. Technol. 213 (2013) 1157-1165.
  15. Kagawa A., Nakamura H., Kiguchi S. and Osada M.: J. Jpn. Foundrymen’s Soc. 67 (1995) 112-117.
  16. Marek C.T.: AFS Transactions. 71 (1963) 185-192.
  17. Katashima S. and Matsuura M.: The J. Jpn. Foundrymen’s Soc. 45 (1973) 865-870.
  18. Katashima S. and Matsuura M.: Jpn. Foundrymen’s Soc. 47 (1975) 260-265.
  19. Hirakata K.: Jpn. Foundrymen’s Soc. 31 (1959) 1018-1024.
  20. Yamamoto S., Aoki S. and Saito M.: J. Jpn. Foundry Eng. Soc. 52 (1980) 603-608.


[JIM HOME] [JOURNAL ARCHIVES]

© 2018 Japan Foundry Engineering Society
Comments to us : editjt@jim.or.jp