Materials Transactions Online

Materials Transactions, Vol.59 No.06 (2018) pp.944-949
© 2018 The Japan Institute of Metals and Materials

Electrodeposition of Aluminum-Tungsten Alloy Films Using EMIC-AlCl3-W6Cl12 Ionic Liquids of Different Compositions

Shota Higashino1, Masao Miyake1, Hisashi Fujii1, Ayumu Takahashi1, Ryuta Kasada2 and Tetsuji Hirato1

1Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
2Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

Electrodeposition of Al-W alloy films with high W contents has been carried out using 1-ethyl-3-methylimidazolium chloride (EMIC)-aluminum chloride (AlCl3) ionic liquids containing tungsten(II) chloride (W6Cl12). Although the corrosion resistance and hardness of the alloy films are expected to be improved with an increase in the W content, dense films with W contents higher than ∼12 at% have not been obtained by electrodeposition to date. This study has demonstrated that electrodeposition using a EMIC-AlCl3-W6Cl12 bath with a lower AlCl3/EMIC molar ratio can yield Al-W alloys with higher W contents. The maximum W content of the alloys electrodeposited using the EMIC-1.5AlCl3 bath reached 19.4 at%. The alloy films with up to ∼18 at% W were dense and smooth, whereas those with >∼18 at% W exhibited increased surface roughness. The hardness and Young’s modulus of the dense and smooth 17.7 at% W film were determined by nano-indentation. The hardness of this film was confirmed to be higher than those of the Al-W alloy films previously obtained from the EMIC-2AlCl3 baths.

[doi:10.2320/matertrans.M2018051]

(Received 2018/02/06; Accepted 2018/04/02; Published 2018/05/25)

Keywords: electroplating, aluminum alloy, tungsten, ionic liquid, nano-indentation

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. Zhang J., Yan C. and Wang F.: Appl. Surf. Sci. 255 (2009) 4926-4932.
  2. Tokunaga T., Sotomoto K., Ohno M. and Matsuura K.: Mater. Trans. 59 (2018) 432-436.
  3. Shaw B.A., Fritz T.L., Davis G.D. and Moshier W.C.: J. Electrochem. Soc. 137 (1990) 1317-1318.
  4. Shaw B.A., Davis G.D., Fritz T.L., Rees B.J. and Moshier W.C.: J. Electrochem. Soc. 138 (1991) 3288-3295.
  5. Davis G.D., Shaw B.A., Rees B.J. and Ferry M.: J. Electrochem. Soc. 140 (1993) 951-959.
  6. Wolowik A., Janik-Czachor M. and Werner Z.: Mater. Chem. Phys. 49 (1997) 164-168.
  7. Wolowik A. and Janik-Czachor M.: Mater. Sci. Eng. A 267 (1999) 301-306.
  8. Stubičar M., Tonejc A. and Radic N.: Vacuum 61 (2001) 309-316.
  9. Kek Merl D., Panjan P. and Milošev I.: Surf. Eng. 29 (2013) 281-286.
  10. Kek Merl D., Panjan P. and Kovač J.: Corros. Sci. 69 (2013) 359-368.
  11. Tsuda T., Hussey C.L. and Stafford G.R.: ECS Trans. 3 (2007) 217-231.
  12. Tsuda T., Ikeda Y., Arimura T., Imanishi A., Kuwabata S., Hussey C.L. and Stafford G.R.: ECS Trans. 50 (2013) 239-250.
  13. Tsuda T., Ikeda Y., Arimura T., Hirogaki M., Imanishi A., Kuwabata S., Stafford G.R. and Hussey C.L.: J. Electrochem. Soc. 161 (2014) D405-D412.
  14. Sato K., Matsushima H. and Ueda M.: ECS Trans. 75 (2016) 305-312.
  15. Higashino S., Miyake M., Fujii H., Takahashi A. and Hirato T.: J. Electrochem. Soc. 164 (2017) D120-D125.
  16. Higashino S., Miyake M., Takahashi A., Matamura Y., Fujii H., Kasada R. and Hirato T.: Surf. Coat. Tech. 325 (2017) 346-351.
  17. Rangel C.M., Travassos M.A. and Chevallier J.: Surf. Coat. Tech. 89 (1997) 101-107.
  18. Rajamure R.S., Vora H.D., Srinivasan S.G. and Dahotre N.B.: Appl. Surf. Sci. 328 (2015) 205-214.
  19. Ueda M., Kigawa H. and Ohtsuka T.: Electrochim. Acta 52 (2007) 2515-2519.
  20. Stafford G.R.: J. Electrochem. Soc. 136 (1989) 635-639.
  21. Tsuda T., Hussey C.L., Stafford G.R. and Bonevich J.E.: J. Electrochem. Soc. 150 (2003) C234-C243.
  22. Ruan S. and Schuh C.A.: Acta Mater. 57 (2009) 3810-3822.
  23. Cross S.R. and Schuh C.A.: Electrochim. Acta 211 (2016) 860-870.
  24. Pan S.J., Tsai W.T., Chang J.K. and Sun I.W.: Electrochim. Acta 55 (2010) 2158-2162.
  25. Pan S.-J., Tsai W.-T., Kuo J.-C. and Sun I.-W.: J. Electrochem. Soc. 160 (2013) D320-D325.
  26. Hirato T., Fransaer J. and Celis J.-P.: J. Electrochem. Soc. 148 (2001) C280-C283.
  27. Shiomi S., Miyake M., Hirato T. and Sato A.: Mater. Trans. 52 (2011) 1216-1221.
  28. Miyake M., Motonami H., Shiomi S. and Hirato T.: Surf. Coat. Tech. 206 (2012) 4225-4229.
  29. Shiomi S., Miyake M. and Hirato T.: J. Electrochem. Soc. 159 (2012) D225-D229.
  30. Endo A., Miyake M. and Hirato T.: Electrochim. Acta 137 (2014) 470-475.
  31. Miyake M., Fujii H. and Hirato T.: Surf. Coat. Tech. 277 (2015) 160-164.
  32. Miyake M., Kubo Y. and Hirato T.: Electrochim. Acta 120 (2014) 423-428.
  33. Kitada A., Nakamura K., Fukami K. and Murase K.: Electrochemistry 82 (2014) 946-948.
  34. Kitada A., Nakamura K., Fukami K. and Murase K.: Electrochim. Acta 211 (2016) 561-567.
  35. Matsui I., Ono S., Takigawa Y., Uesugi T. and Higashi K.: Mater. Sci. Eng. A 550 (2012) 363-366.
  36. F. Endres, D. MacFarlane and A. Abbott (ed.): Electrodeposition from Ionic Liquids, (Wiley, Weinheim, 2008).
  37. G.R. Stafford and C.L. Hussey: in Advances in Electrochemical Science and Engineering, Volume 7, ed. by R.C. Alkire and D.M. Kolb, (Willey, Weinheim, 2002) pp. 275-347.
  38. Tsuda T.: J. Surf. Finish. Soc. Japan 60 (2009) 497-501.
  39. Shiomi S., Miyake M. and Hirato T.: J. Japan Inst. Light Met. 63 (2013) 234-242.
  40. Ueda M.: J. Solid State Electrochem. 21 (2017) 641-647.
  41. Gu Y., Liu J., Qu S., Deng Y., Han X. and Hu W.: J. Alloys Compd. 690 (2017) 228-238.
  42. Tsuda T., Stafford G.R. and Hussey C.L.: J. Electrochem. Soc. 164 (2017) H5007-H5017.
  43. Fannin A.A., Floreani D.A., King L.A., Landers J.S., Piersma B.J., Stech D.J., Vaughn R.L. and Wilkes J.S.: J. Phys. Chem. 88 (1984) 2614-2621.
  44. Leyland A. and Matthews A.: Wear 246 (2000) 1-11.
  45. Leyland A. and Matthews A.: Surf. Coat. Tech. 177-178 (2004) 317-324.
  46. Li X. and Bhushan B.: Mater. Charact. 48 (2002) 11-36.
  47. Hay J., Agee P. and Herbert E.: Exp. Tech. 34 (2010) 86-94.
  48. Rouxel T.: J. Am. Ceram. Soc. 90 (2007) 3019-3039.
  49. Zysset P.K., Edward Guo X., Edward Hoffler C., Moore K.E. and Goldstein S.A.: J. Biomech. 32 (1999) 1005-1012.
  50. Tsuda T., Hussey C.L. and Stafford G.R.: J. Electrochem. Soc. 152 (2005) C620-C625.
  51. Tsuda T., Arimoto S. and Kuwabata S.: J. Electrochem. Soc. 155 (2008) D256-D262.
  52. Wang J.G., Choi B.W., Nieh T.G. and Liu C.T.: J. Mater. Res. 15 (2000) 798-807.
  53. Yuan C.C. and Xi X.K.: J. Appl. Phys. 109 (2011) 033515.
  54. Schuh C.A., Hufnagel T.C. and Ramamurty U.: Acta Mater. 55 (2007) 4067-4109.
  55. Argon A.S.: Acta Metall. 27 (1979) 47-58.
  56. Pan D., Yokoyama Y., Fujita T., Liu Y.H., Kohara S., Inoue A. and Chen M.W.: Appl. Phys. Lett. 95 (2009) 141909.


[JIM HOME] [JOURNAL ARCHIVES]

© 2018 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp