Materials Transactions Online

Materials Transactions, Vol.59 No.06 (2018) pp.935-938
© 2018 The Japan Institute of Metals and Materials

Fabrication of Defect-Free Fe-Mn Alloys by Using Electrodeposition

Yu Ogura, Hiroki Mori, Yorinobu Takigawa, Tokuteru Uesugi and Kenji Higashi

Department of Materials Science, Osaka Prefecture University, Sakai 599-8531, Japan

Nanocrystalline Fe-Mn alloys for molds with high strength, high thermal stability, and relatively low cost were prepared by electrodeposition. We used electrolytes that primarily consisted of iron sulfate and manganese sulfate combined with manganese chloride. Since electrodeposited Fe-Mn alloys tend to include many defects that greatly reduce their mechanical properties, we developed a method for reducing the number of defects in Fe-Mn alloys. The presence of surface cracks was strongly related to the orientation index for the (200) plane, which can be controlled by the amount of Mn. The number of voids was decreased as the current efficiency increased by controlling the current density and pH. An Fe-Mn alloy with no surface cracks was successfully fabricated by optimizing the current density and Mn/Fe molar ratio.


(Received 2018/01/09; Accepted 2018/03/26; Published 2018/05/25)

Keywords: electrodeposition, iron-manganese alloy, defect, nanocrystalline metals, high strength

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. R. Parkinson: Electroforming - a Unique Metal Fabrication Process, (AIFM Galvano Tecnica e Nuove Finiture, Italy, 1999) pp. 1-4.
  2. Schaffert R.M. and Gonser B.W.: J. Electrochem. Soc. 84 (1943) 319-334.
  3. M. Izaki: Electrodeposition of Iron and Iron Alloys, Modern Electroplating, fourth ed., ed. by M. Schlesinger and M. Paunovic, (John Wiley & Sons, United States, 2011) pp. 461-481.
  4. Harty S.F., McGeough J.A. and Tulloch R.M.: Surf. Technol. 12 (1981) 39-55.
  5. Son S.H., Park S.C., Lee W. and Lee H.: Trans. Nonferrous Met. Soc. China 23 (2013) 366-371.
  6. Budke E., Herzig Ch. and Wever H.: Phys. Status Solidi A 127 (1991) 87-101.
  7. Wert C.A.: Phys. Rev. 79 (1950) 601-605.
  8. Homan C.G.: Acta Metall. 12 (1964) 1071-1079.
  9. Yamamoto T., Nagayama T., Nakamura T. and Mizutani Y.: J. Surf. Finish. Soc. Jpn. 62 (2011) 702-707.
  10. Matsui I., Kawakatsu T., Takigawa Y., Uesugi T. and Higashi K.: Mater. Lett. 116 (2014) 71-74.
  11. Matsui I., Mori H., Kawakatsu T., Takigawa Y., Uesugi T. and Higashi K.: Mater. Sci. Eng. A 607 (2014) 505-510.
  12. Mori H., Matsui I., Takigawa Y., Uesugi T. and Higashi K.: Mater. Lett. 175 (2016) 86-88.
  13. Oikawa H.: Tetsu to Hagane 68 (1982) 1489-1497.
  14. Huang S., Worthington D.L., Asta M., Ozolins V., Ghosh G. and Liaw P.K.: Acta Mater. 58 (2010) 1982-1993.
  15. Ruiz-Gómez S., Ranchal R., Abuín M., Aragón A.M., Velasco V., Marín P., Mascaraque A. and Pérez L.: Phys. Chem. Chem. Phys. 18 (2016) 8212-8218.
  16. Nakahara S.: Acta Metall. 36 (1988) 1669-1681.
  17. Fukumuro N., Yae S., Mastuda H. and Fukai Y.: J. Surf. Finish. Soc. Jpn. 63 (2012) 222-226.
  18. Tsyntsaru N., Bobanova J., Ye X., Cesiulis H., Dikusar A., Prosycevas I. and Celis J.P.: Surf. Coat. Tech. 203 (2009) 3136-3141.
  19. Li H. and Ebrahimi F.: Acta Mater. 54 (2006) 2877-2886.
  20. Amblard J., Epelboin I., Froment M. and Maurin G.: J. Appl. Electrochem. 9 (1979) 233-242.
  21. Matsui I., Takigawa Y., Yokoe D., Kato T., Uesugi T. and Higashi K.: Mater. Trans. 55 (2014) 1859-1866.
  22. Su X. and Qiang C.: Bull. Mater. Sci. 35 (2012) 183-189.
  23. M. Schlesinger and M. Paunovic: Modern Electroplating, 5th ed., (John Wiley & Sons, 2010) p. 309.
  24. Brooks I., Lin P., Palumbo G., Hibbard G.D. and Erb U.: Mater. Sci. Eng. A 491 (2008) 412-419.
  25. Sanders P.G., Youngdahl C.J. and Weertman J.R.: Mater. Sci. Eng. A 234-236 (1997) 77-82.


© 2018 The Japan Institute of Metals and Materials
Comments to us :