Materials Transactions Online

Materials Transactions, Vol.59 No.06 (2018) pp.917-921
© 2018 The Japan Institute of Metals and Materials

Influence of Thermal Ageing and Specimen Size on Fracture Toughness of Z3CN20-09M Casting Duplex Stainless Steels

Yu Wang, Yaohong Yao, Zhengpin Wang, Yaohua Jin, Yuyu Gao, Nan Cao and Jiangnan Liu

Shaanxi Provincial Key Laboratory of Photoelectric Functional Materials and Devices, Xi’an Technological University, Xi’an 710032, P. R. China

To assess the thermal aging embrittleness of the primary coolant pipes in pressurized water reactor (PWR), the fracture toughness test is conducted for Z3CN20-09M CDSSs thermally aged at 400°C for 10,000 h and the fracture morphologies of the virgin and the aged specimen are analyzed based on SEM technique. The influence of the specimen thickness and thermal ageing time on the fracture toughness of the material is discussed in details. The results show that with increasing thermal ageing time, the JIC of Z3CN20-09M CDSSs significantly decreases and the fracture mechanism transits from the ductile microvoid coalescence fracture to the cleavage fracture in ferrite and the quasi-cleavage fracture in austenite. Moreover, the theoretical expression between the fracture toughness KC and the specimen thickness t of Z3CN20-09M CDSSs is established, which can be used to estimate the fracture toughness with different specimen thickness.


(Received 2017/12/05; Accepted 2018/03/28; Published 2018/05/25)

Keywords: casting duplex stainless steel, thermal ageing embrittleness, fracture toughness, size effect, spinodal decomposition

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Cicero S., Setién J. and Gorrochategui I.: Nucl. Eng. Des. 239 (2009) 16-22.
  2. Ibrahim O.H., Ibrahim I.S. and Khalifa T.A.F.: J. Mater. Sci. Technol. 26 (2010) 810.
  3. Kwon J.D., Ihn J.H., Park J.C. and Choi S.J.: KSME Int. J. 16 (2002) 902.
  4. Chopra O.K. and Chung H.M.: Nucl. Eng. Des. 89 (1985) 305.
  5. Chung H.M.: Int. J. Pressure Vessels Piping 50 (1992) 179.
  6. Yao Y.H., Wei J.F. and Wang Z.P.: Mater. Sci. Eng. A 551 (2012) 116.
  7. Li S.L., Wang Y.L. and Wang X.T.: Mater. Sci. Eng. A 625 (2015) 186.
  8. Yamada T., Okano S. and Kuwano H.: J. Nucl. Mater. 350 (2006) 47.
  9. Mathew M.D., Lietzan L.M., Murty K.L. and Shah V.N.: Mater. Sci. Eng. A 269 (1999) 186.
  10. Shiao J.J., Tsai C.H., Kai J.J. and Huang J.H.: J. Nucl. Mater. 217 (1994) 269.
  11. Hättestrand M., Larsson P., Chai G., Nilsson J.O. and Odqvist J.: Mater. Sci. Eng. A 499 (2009) 489.
  12. Trautwein A. and Gysel W.: ASTM Spec. Tech. Publ. 756 (1982) 165.
  13. Zhu X.K. and Joyce J.A.: Eng. Fract. Mech. 85 (2012) 1.
  14. Lu W.F., Lai C.L. and Huang J.Y.: Mater. Trans. 55 (2014) 506.
  15. Dutt B.S., Shanthi G., Sasikala G., Babu M.N., Venugopal S., Albert S.K., Bhaduri A.K. and Jayakumar T.: Procedia Eng. 86 (2014) 302.
  16. Tanabe Y.: Mater. Trans. 54 (2013) 314.
  17. Koo J.M., Park S. and Seok C.S.: Nucl. Eng. Des. 259 (2013) 198.
  18. Cui Z.Y., Liu Z.Y., Wang L.W., Du C.W. and Li X.G.: Mater. Trans. 56 (2015) 777.
  19. Sasikala G. and Ray S.K.: J. Nucl. Mater. 408 (2011) 45.
  20. A.D. McNaught and A. Wilkinson (Eds.): 2nd Ed. Blackwell Scientific Publications. 1997.
  21. American Society for Testing of Materials: ASTM E1820-11e2. Pennsylvania: ASTM Inter-national, 2011.
  22. American Society for Testing of Materials: ASTM E399-12e3. Pennsylvania: ASTM Inter-national, 2012.
  23. Yang J.Y. and Zhang X.: J. Mech. Strength. 25 (2003) 076.
  24. Weiss V. and Yukawa S.: ASTM Spec. Tech. Publ. 381 (1965) 1.
  25. O.K. Chopra: NUREG/CR-4513, ANL-93/22, 1994.
  26. O.K. Chopra: NUREG/CR-4744, ANL-92/42, 1993.
  27. Bentley J. and Miller M.K.: Mater. Res. Symp. Proc. 82 (1987) 163.
  28. Vitek J.M., David S.A., Alexander D.J., Keiser J.R. and Nanstad R.K.: Acta Metall. 39 (1991) 503.


© 2018 The Japan Institute of Metals and Materials
Comments to us :