Materials Transactions Online

Materials Transactions, Vol.59 No.06 (2018) pp.903-907
© 2018 The Japan Institute of Metals and Materials

In-Situ Study of Phase Transformation and Microstructural Evolution of Ni45Mn37In13Co5 Metamagnetic Shape Memory Alloy

Su Zhao1 and Binfeng Lu2

1School of Material Science and Engineering, Shanghai Dianji University, No. 1350 Ganlan Road, Shanghai 201306, China
2School of Chemistry and Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, No. 99 3rd South Ring Road, Changshu 215500, China

This paper aims to study the phase transformation and microstructural evolution of Ni45Mn37In13Co5 metamagnetic shape memory alloy during heating and cooling in terms of differential thermal analysis, thermo-magnetic analysis, and temperature-variable optical Kerr microscopy. It has been found that two-stage phase transformation occurs for the alloy during heating. The first stage is magneto-structural transition from low-magnetic martensite to ferromagnetic austenite with a transformation entropy change of about 30.5 J kg−1 K−1, and the other is pure magnetic transition from ferromagnetic austenite to paramagnetic austenite. In-situ observation of microstructural evolution at one given position during heating shows that the austenite transformation begins at 359 K (inferred as As), reaches a peak value at about 6 K above the As and ends at 375 K. Meanwhile, the temperature when the lath-like martensite begins to disappear (or appear) differs at different region, suggesting that various degrees of superheat (or supercool) and nucleation energy barriers are needed for different martensitic variants. However, one common feature in transformation at these different regions is that the collective formation of a series of austenite (martensite) plays a dominant role.


(Received 2017/12/26; Accepted 2018/03/26; Published 2018/05/25)

Keywords: shape memory alloy, Ni-Mn-In-Co, martensitic transformation, microstructure, in-situ observation

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Planes A., Manosa L. and Acet M.: J. Phys.-Condens. Mat. 21 (2009) 233201.
  2. Jiang C., Wang J. and Xu H.: Mater. China 30 (2011) 42-50.
  3. Graf T., Felser C. and Parkin S.S.P.: Prog. Solid State Chem. 39 (2011) 1-50.
  4. Nie Z., Wang Y. and Liu D.: Mater. China 31 (2012) 15-25.
  5. Roy S.B.: J. Phys.-Condens. Mat. 25 (2013) 183201.
  6. Yu G., Xu Y., Liu Z., Qiu H., Zhu Z. and Pan L.: Rare Met. 34 (2015) 527-539.
  7. Sanvito S., Oses C., Xue J., Tiwari A., Zic M., Archer T., Tozman P., Venkatesan M., Coey M. and Curtarolo S.: Sci. Adv. 3 (2017) e1602241.
  8. Chmielus M., Zhang X.X., Witherspoon C., Dunand D.C. and Muellner P.: Nat. Mater. 8 (2009) 863-866.
  9. Zhao Z.M., Wan J.F. and Wang J.N.: Mater. Trans. 57 (2016) 477-480.
  10. Sakon T., Fujimoto N., Kanomata T. and Adachi Y.: Metals 7 (2017) 410.
  11. Xu X., Katakura I., Kihara T., Tokunaga M., Ito W., Umetsu R.Y. and Kainuma R.: Mater. Trans. 54 (2013) 357-362.
  12. Biswas C., Rawat R. and Barman S.R.: Appl. Phys. Lett. 86 (2005) 202508.
  13. Chatterjee S., Giri S., Majumdar S. and De S.K.: J. Phys. D 42 (2009) 065001.
  14. Sutou Y., Imano Y., Koeda N., Omori T., Kainuma R., Ishida K. and Oikawa K.: Appl. Phys. Lett. 85 (2004) 4358-4360.
  15. Krenke T., Duman E., Acet M., Wassermann E.F., Moya X., Manosa L. and Planes A.: Nat. Mater. 4 (2005) 450-454.
  16. Deltell A., Escoda L., Saurina J. and Josep Sunol J.: Metals 5 (2015) 695-705.
  17. Umetsu Y.R., Xu X., Ito W. and Kainuma R.: Metals 7 (2017) 414.
  18. Li K.F., Gao L. and Liang Y.C.: Mater. Trans. 59 (2018) 224-229.
  19. Ito W., Nagasako M., Umetsu R.Y., Kainuma R., Kanomata T. and Ishida K.: Appl. Phys. Lett. 93 (2008) 232503.
  20. Kainuma R., Imano Y., Ito W., Sutou Y., Morito H., Okamoto S., Kitakami O., Oikawa K., Fujita A., Kanomata T. and Ishida K.: Nature 439 (2006) 957-960.
  21. Liu J., Gottschall T., Skokov K.P., Moore J.D. and Gutfleisch O.: Nat. Mater. 11 (2012) 620-626.
  22. Karaca H.E., Karaman I., Brewer A., Basaran B., Chumlyakov Y.I. and Maier H.J.: Scr. Mater. 58 (2008) 815-818.
  23. Liu J., Aksoy S., Scheerbaum N., Acet M. and Gutfleisch O.: Appl. Phys. Lett. 95 (2009) 232515.
  24. Khovaylo V.V., Kanomata T., Tanaka T., Nakashima M., Amako Y., Kainuma R., Umetsu R.Y., Morito H. and Miki H.: Phys. Rev. B 80 (2009) 144409.
  25. Liu J., Scheerbaum N., Weiß S. and Gutfleisch O.: Appl. Phys. Lett. 95 (2009) 152503.
  26. Zhou L., Mehta A., Giri A., Cho K. and Sohn Y.: Mater. Sci. Eng. A 646 (2015) 57-65.
  27. Ito W., Imano Y., Kainuma R., Sutou Y., Oikawa K. and Ishida K.: Metall. Mater. Trans. A 38 (2007) 759-766.
  28. Li Z., Jing C., Zhang H.L., Yu D.H., Chen L., Kang B.J., Cao S.X. and Zhang J.C.: J. Appl. Phys. 108 (2010) 113908.
  29. Huang Y.J., Hu Q.D. and Li J.G.: Appl. Phys. Lett. 101 (2012) 222403.
  30. Recarte V., Pérez-Landazábal J.I., Sánchez-Alarcos V. and Rodríguez-Velamazán J.A.: Acta Mater. 60 (2012) 1937-1945.
  31. Sepehri-Amin H., Taubel A., Ohkubo T., Skokov K.P., Gutfleisch O. and Hono K.: Acta Mater. 147 (2018) 342-349.
  32. Xu X., Ito W., Katakura I., Tokunaga M. and Kainuma R.: Scr. Mater. 65 (2011) 946-949.


© 2018 The Japan Institute of Metals and Materials
Comments to us :