Materials Transactions Online

Materials Transactions, Vol.59 No.06 (2018) pp.876-882
© 2018 The Japan Institute of Metals and Materials

Effect of Mineralogical Phase and Chemical Composition of Fly Ash on Electromagnetic Wave-Absorbing Properties

Yinsuo Dai1, 2, Jianhua Wu1, Derong Wang1, Chunhua Lu2 and Zhongzi Xu2

1National Defense Engineering College, Army Engineering University of PLA, Nanjing 210007, China
2College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China

In order to explore the electromagnetic radiation protection function of fly ash as building materials, Scanning Electron Microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Mössbauer were used to analyze the chemical composition and mineralogical phase of two types of fly ash. Electromagnetic parameters of the samples were analyzed and discussed in detail at the frequency range of 1∼18 GHz. The results showed that fly ash had electromagnetic wave absorbing property due to porous carbon grain and iron oxide, and that dielectric loss was more than magnetic loss for fly ash and electromagnetic property of type III was more than of type I. There were several absorbing-wave interference peaks at the frequency of 1-18 GHz, at thickness of 10-20 mm epoxy-based fly ash. The cement-based fly ash showed electromagnetic wave-absorbing properties at 10∼18 GHz and the biggest absorption reached 14.5 dB at 16 GHz at the thickness of 20 mm, so the fly ash should be expected to be a building material for electromagnetic protection.


(Received 2017/12/06; Accepted 2018/03/12; Published 2018/05/25)

Keywords: fly ash, mineralogical phase, chemical composition, electromagnetic parameters, absorbing wave properties

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents


  1. Cao D.Z., Selic E. and Herbell J.D.: J. Zhejiang Univ. Sci. A 9 (2008) 681-687.
  2. Song C., Xu D.F., Jiang C.J., Teng Y., Sun Z., Xu H. and An L.S.: J. Therm. Anal. Calorim. 116 (2014) 1279-1284.
  3. Wang X.S.: Environ. Earth Sci. 71 (2014) 1673-1681.
  4. Bajukov O.A., Anshits N.N., Petrova M.I., Balaev A.D. and Anshits A.G.: Mater. Chem. Phys. 114 (2009) 495-503.
  5. Hasezaki K., Nakashita A., Kaneko G. and Kakuda H.: Mater. Trans. 48 (2007) 3062-3065.
  6. Moglie F., Micheli D., Laurenzi S., Marchetti M. and Mariani Primiani V.: Carbon 50 (2012) 1972-1980.
  7. Mofarrah A., Husain T. and Bottaro C.: Int. J. Environ. Sci. Technol. 11 (2014) 159-168.
  8. Li B.Y., Duan Y.P. and Liu S.H.: Constr. Build. Mater. 27 (2012) 184-188.
  9. Ma B.G., Qi M., Peng J. and Li Z.J.: Environ. Int. 25 (1999) 423-432.
  10. Feng Y.B., Qiu T., Li X.Y. and Shen C.Y.: J. Wuhan Univ. Technol. 22 (2007) 266-270.
  11. Lu Z., Maroto-Valer M.M. and Schobert H.H.: Fuel 87 (2008) 2598-2605.
  12. J.F. Moulder, W.F. Stickle, P.E. Sobol and K.D. Bomben: Handbook of X-ray Photoelectron Spectroscopy, (Perkin Elmer Corp., Physical Electronics, Inc., USA., 1992).
  13. Maeda Y., Sugimoto S., Book D., Ota H., Kimura M., Nakamura H., Kagotani T. and Homma M.: Mater. Trans. 41 (2000) 567-570.
  14. Reyes Caballero F., Ovalle S.A.M. and Gutińrrez M.M.: Hyperfine Interact. 232 (2015) 141-148.
  15. Tumidajski P.J.: Cement Concr. Res. 35 (2005) 614-615.
  16. Yang Y.Q., Qi S.H. and Wang J.N.: J. Alloys Compd. 520 (2012) 114-121.
  17. Feng Y.B. and Qiu T.: Journal of Nanjing University of Aeronautics & Astronautics 37 (2005) 232-235.
  18. Cao J. and Chung D.D.L.: Cement Concr. Res. 34 (2004) 1889-1892.
  19. Bora P.J., Vinoy K.J., Ramamurthy P.C., Kishore and Madras G.: Electron. Mater. Lett. 12 (2016) 603-609.
  20. Liu H.Y., Tan H.Z., Gao Q. and Xu T.M.: Fuel 89 (2010) 3352-3357.


© 2018 The Japan Institute of Metals and Materials
Comments to us :