Materials Transactions Online

Materials Transactions, Vol.59 No.06 (2018) pp.870-875
© 2018 The Japan Institute of Metals and Materials

First-Principles Study of BCC/FCC Phase Transition Promoted by Interstitial Carbon in Iron

Tien Quang Nguyen1, 4, Kazunori Sato2 and Yoji Shibutani3, 4

1Institute for NanoScience Design, Osaka University, Toyonaka 560-8531, Japan
2Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
3Division of Mechanical Engineering, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
4Nanotechnology Program, Vietnam-Japan University, Luu Huu Phuoc Street, My Dinh 1 Ward, Nam Tu Liem District, Ha Noi, Viet Nam

We report the effect of carbon on the phase transition between body centered cubic (BCC) and face centered cubic (FCC) in iron along Bain pathway, taking into account magnetic configurations, using density functional theory in combination with the generalized solid-state nudged elastic band method. We found that, for pure iron system, the energy barrier of 13.22 kJ·mol−1 is needed for the BCC-to-FCC process happens, while 2.41 kJ·mol−1 is needed for the reverse process (FCC-to-BCC). In the presence of carbon at the octahedral interstitial site of iron BCC/FCC lattice, the energy barrier of 4.53 kJ·mol−1 is needed for the transition from FCC to BCC while the 12.25 kJ·mol−1 is needed for a transition from BCC to FCC along the Bain path. Thus, carbon promotes the transition from BCC to FCC while it prevents the phase transition in opposite direction, from FCC to BCC. This is due to the local stress field formed in the vicinity of carbon atom which pushes the iron atoms aligning with carbon along [001] direction away.

[doi:10.2320/matertrans.M2018014]

(Received 2018/01/11; Accepted 2018/03/06; Published 2018/05/25)

Keywords: Bain transformation, iron-carbon alloy, first-principles, nudged elastic band

PDF(member)PDF (member) PDF(organization)PDF (organization) Order DocumentOrder Document Table of ContentsTable of Contents

REFERENCES

  1. D.A. Porter and K.E. Easterling: Phase Transformation in Metals and Alloys, (Chapman & Hall, London, 1992) p. 514.
  2. Taylor K.A. and Cohen M.: Prog. Mater. Sci. 36 (1992) 225.
  3. Hillert M.: Metall. Mater. Trans. A 6 (1975) 5.
  4. Takaki S., Kawasaki K. and Kimura Y.: J. Mater. Process. Technol. 117 (2001) 359.
  5. Tasan C.C., Diehl M., Yan D., Bechtold M., Roters F., Schemmann L., Zheng C., Peranio N., Ponge D., Koyama M., Tsuzaki K. and Raabe D.: Annu. Rev. Mater. Res. 45 (2015) 391.
  6. Razumov I.K., Boukhvalov D.V., Petrik M.V., Urtsev V.N., Shmakov A.V., Katsnelson M.I. and Gornostyrev Y.N.: Phys. Rev. B 90 (2014) 094101.
  7. Razumov I.K., Gornostyrev Y.N. and Katsnelson M.I.: J. Phys. Condens. Matter 25 (2013) 135401.
  8. Razumov I.K., Gornostyrev Y.N. and Katsnelson M.I.: Phys. Met. Metallography 118 (2017) 362.
  9. Zhang X., Hickel T., Rogal J., Fhler S., Drautz R. and Neugebauer J.: Acta Mater. 99 (2015) 281.
  10. Bain E.C. and Dunkirk N.Y.: Trans. AIME 70 (1924) 25.
  11. Kurdjumow G.V. and Sachs G.: Z. Phys. 64 (1930) 325.
  12. Nishiyama Z.: Sci. Rep. Tohoku Imp. Univ. 23 (1934) 637.
  13. Wassermann G.: Arch. Eisenhüttenwes. 6 (1933) 347.
  14. Krasko G.L. and Olson G.B.: Phys. Rev. B 40 (1989) 11536.
  15. Marcus P.M., Moruzzi V.L. and Qiu S.L.: Phys. Rev. B 60 (1999) 369.
  16. Tsetseris L.: Phys. Rev. B 72 (2005) 012411.
  17. Sawada H., Kawakami K. and Sugiyama M.: J. Jpn. Inst. Met. 68 (2004) 977.
  18. Kresse G. and Hafner J.: Phys. Rev. B 47 (1993) 558.
  19. Kresse G. and Furthmuller J.: Phys. Rev. B 54 (1996) 11169.
  20. Perdew J.P., Burke K. and Ernzerhof M.: Phys. Rev. Lett. 77 (1996) 3865.
  21. Kresse G. and Joubert J.: Phys. Rev. B 59 (1999) 1758.
  22. Blöchl P.E.: Phys. Rev. B 50 (1994) 17953.
  23. Monkhorst H.H. and Pack J.D.: Phys. Rev. B 13 (1976) 5188.
  24. Methfessel M. and Paxton A.T.: Phys. Rev. B 40 (1989) 3616.
  25. Henkelman G., Uberuaga B.P. and Jonsson H.: J. Chem. Phys. 113 (2000) 9901.
  26. Henkelman G. and Jonsson H.: J. Chem. Phys. 113 (2000) 9978.
  27. Pulay P.: Chem. Phys. Lett. 73 (1980) 393.
  28. Sheppard D., Xiao P., Chemelewski W., Johnson D.D. and Henkelman G.: J. Chem. Phys. 136 (2012) 074103.
  29. Birch F.: Phys. Rev. 71 (1947) 809.
  30. Murnaghan F.D.: Proc. Natl. Acad. Sci. USA 30 (1944) 244.
  31. Roberts C.S.: Trans. AIME 197 (1953) 203.
  32. Medvedeva N.I., Van Aken D. and Medvedeva J.E.: J. Phys. Condens. Matter 22 (2010) 316002.
  33. Bland J.A.C., Daboo C., Heinrich B., Celinski Z. and Bateson R.D.: Phys. Rev. B 51 (1995) 258.
  34. Kübler J.: Phys. Lett. A 81 (1981) 81.
  35. Wang J.T., Wang D.S. and Kawazoe Y.: Appl. Phys. Lett. 88 (2006) 132513.
  36. Okatov S.V., Kuznetsov A.R., Gornostyrev Y.N., Urtsev V.N. and Katsnelson M.I.: Phys. Rev. B 79 (2009) 094111.
  37. Zhang X., Hickel T., Rogal J. and Neugebauer J.: Phys. Rev. B 94 (2016) 104109.
  38. C. Kittel: Introduction to Solid State Physics, 6th ed., (John Wiley & Sons Inc., New York, 1986) p. 76.
  39. Dronskowski R. and Blöchl P.E.: J. Phys. Chem. 97 (1993) 8617.
  40. Deringer V.L., Tchougreeff A.L. and Dronskowski R.: J. Phys. Chem. A 115 (2011) 5461.
  41. Maintz S., Deringer V.L., Tchougréeff A.L. and Dronskowski R.: J. Comput. Chem. 37 (2016) 1030.


[JIM HOME] [JOURNAL ARCHIVES]

© 2018 The Japan Institute of Metals and Materials
Comments to us : editjt@jim.or.jp