Materials Transactions Online

Materials Transactions, Vol.59 No.06 (2018) pp.1005-1008
© 2018 The Japan Institute of Metals and Materials

Synthesis and Thermal Stability of B20-Type TMGe (TM = Mn, Fe and Co) Intermetallic Compounds Prepared by Mechanical Milling

Takanobu Hiroto1, Yeong-Gi So2 and Kaoru Kimura1

1Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
2Department of Materials Science, Akita University, Akita 010-8502, Japan

We propose a new synthesis method of transition-metal monogermanides (TMGe, TM = Mn, Fe, and Co) with a B20-type chiral structure. Arc-melting followed by mechanical milling can be used to produce ∼70-110 Å-sized B20-type structures. Differential scanning calorimetry and heat-treatment tests indicated that the B20-phases are stable below 673 K, 873 K and 773 K for MnGe, FeGe and CoGe, respectively. We also demonstrated that sintering tests are able to yield dense compacts from the FeGe and CoGe B20-phase powders.


(Received 2018/01/12; Accepted 2018/03/19; Published 2018/05/25)

Keywords: B20-type transition-metal monogermanide, X-ray diffraction, mechanical milling, spark plasma sintering

PDF(Free)PDF (Free) Table of ContentsTable of Contents


  1. Hohl H., Ramirez A.P., Goldman C., Ernst G. and Bucher E.: J. Alloys Compd. 278 (1998) 39.
  2. Lebech B., Bernhard J. and Freltoft T.: J. Phys. Condens. Matter 1 (1989) 6105.
  3. Mühlbauer S., Binz B., Jonietz F., Pfleiderer C., Rosch A., Neubauer A., Georgii R. and Böni P.: Science 323 (2009) 915.
  4. Tonomura A., Yu X.Z., Yanagisawa K., Matsuda T., Onose Y., Kanazawa N., Park H.S. and Tokura Y.: Nano Lett. 12 (2012) 1673.
  5. Münzer W., Neubauer A., Adams T., Mühlbauer S., Franz C., Jonietz F., Georgii R., Böni P., Pedersen B., Schmidt M., Rosch A. and Pfleiderer C.: Phys. Rev. B 81 (2010) 041203(R).
  6. Yu X.Z., Onose Y., Kanazawa N., Parc J.H., Han J.H., Matsui Y., Nagaosa N. and Tokura Y.: Nature 465 (2010) 901.
  7. Yu X.Z., Kanazawa N., Onose Y., Kimoto K., Zhang W.Z., Ishiwata S., Matsui Y. and Tokura Y.: Nat. Mater. 10 (2011) 106.
  8. Grigoriev S.V., Potapova N.M., Siegfried S.-A., Dyadkin V.A., Moskvin E.V., Dmitriev V., Menzel D., Dewhurst C.D., Chernyshov D., Sadykov R.A., Fomicheva L.N. and Tsvyashchenko A.V.: Phys. Rev. Lett. 110 (2013) 207201.
  9. Tokunaga Y., Yu X.Z., White J.S., Rønnow H.M., Morikawa D., Taguchi Y. and Tokura Y.: Nat. Commun. 6 (2015) 7638.
  10. Seki and M. Mochizuki: Skyrmions in Magnetic Materials, (SpringerBriefs in Physics, 2015) chapter 2.
  11. Kanazawa N., Onose Y., Shiomi Y., Ishiwata S. and Tokura Y.: Appl. Phys. Lett. 100 (2012) 093902.
  12. Yamashita O. and Tomiyoshi S.: J. Appl. Phys. 93 (2003) 368.
  13. Mizuta Y.P. and Ishii F.: Sci. Rep. 6 (2016) 28076.
  14. Richardson M.: Acta Chem. Scand. 21 (1967) 2305.
  15. Takizawa H., Sato T., Endo T. and Shimoda M.: J. Solid State Chem. 73 (1988) 40.
  16. Kwon Y.S., Gerasimov K.B., Lomovsky O.I. and Pavlov S.V.: J. Alloys and Compd. 352 (2003) 194.
  17. Sviridov I.A., Kubalova L.M., Vasil’eva O.Ya. and Fadeeva V.I.: Inorg. Mater. 42 (2006) 867.
  18. Sato N., Ouchi H., Takagiwa Y. and Kimura K.: Chem. Mater. 28 (2016) 529.
  19. Wilhelm H., Schmidt M., Cardoso-Gil R., Burkhardt U., Hanfland M., Schwarz U. and Akselrud L.: Sci. Technol. Adv. Mater. 8 (2007) 416.
  20. Larchev V.I. and Popova S.V.: J. Less Common Met. 87 (1982) 53.
  21. Williamson G.K. and Hall W.H.: Acta Metall. 1 (1953) 22.
  22. Gerasimov K.B. and Pavlo S.V.: Intermetallics 8 (2000) 451.
  23. See Landolt-Börnstein datasheet, by B. Predel (edited by O. Madelung), (Springer, 1996) and references therein.
  24. Huang S.X. and Chien C.L.: Phys. Rev. Lett. 108 (2012) 267201.
  25. Momma K. and Izumi F.: J. Appl. Cryst. 44 (2011) 1272.
  26. Hiroto T., Sato T.J., So Y.-G. and Kimura K.: (unpublished).


© 2018 The Japan Institute of Metals and Materials
Comments to us :